Laser Fault Attack on Physically Unclonable Functions

Shahin Tajik, Heiko Lohrke, Fatemeh Ganji, Jean-Pierre Seifert, Christian Boit

Physically Unclonable Functions (PUFs)

Utilizing manufacturing processing variations on different chips

Which PUF is better?

- Authentication: PUFs with large challenge spaces:
 - e.g., Arbiter PUF Family & Bistable Ring PUF
- Key Generation Generation: PUF with high response entropies,
 - e.g., Ring-oscillator PUF

Authentication Scenario

Arbiter PUF Family

Advantage: Large Challenge space for authentication

Disadvantage: Vulnerable to Machine Learning

- * Experimentally and Theoretically broken by ML Attacks!
- * Arbiter PUF is PAC-Learnable!

Implementation on FPGA

Countermeasure to ML Attacks: XOR Arbiter PUF

- * With limited number of arbiter chains: still vulnerable to ML attacks!!!
- ★ However, large number of arbiter chains cannot be learned in polynomial time!

Simplifying ML attacks by Deactivating all Arbiter Chains Except One!

Simplifying ML attacks by Deactivating all Arbiter Chains Except One!

Simplifying ML attacks by Deactivating all Arbiter Chains Except One!

Key Generation Scenario

Ring-oscillator PUF

- N ring-oscillators
- Entropy density in the PUF response >> Iog₂(N!)

Reducing the Entropy of the PUF responses

 Reduction of the entropy of the generated random numbers: *log₂(N!) >> log₂((N-x)!)*

Fault Injection into the Configuration Memory of LUTs

- *n* input LUT >> 2⁽ⁿ⁾ SRAM cells
 > 2(2ⁿ) configurations
- Any Faulty SRAM cell in the LUT change the logical combinatorial function

Possible Targets

Inverters as Easiest Targets

DUT: Altera MAX V (180 nm)

Optical Setup: HAMAMATSU PHEMOS

In-

Experimental Setup

- Finding the sensitive locations by scanning the whole LE with the laser scanning microscope (LSM)
- Addressing all SRAMs of a LUT after the laser shot to observe the faults

Results

Finding PUFs by photonic emission analysis

XOR arbiter PUF with 2 arbiter chains

RO PUF with 3 oscillators

Classical Countermeasures?

- Protecting arithmetic operations using redundancy: e.g., Triple Modular Redundancy (TMR), Duplication with Comparison (DWC)
- Duplication (i.e., physical cloning) of one PUF instance is nearly impossible

Conclusion

- Reducing the complexity of the PUFs in authentication and key generation applications using Laser Fault injection:
 - Learning XOR PUFs in polynomial time
 - Entropy reduction of PUF responses
- Launching the same attack on other platforms, such as ASICs by deactivating the registers
- Launching the same attack on similar intrinsic primitives such as TRNGs and BR PUFs
- Classical countermeasures cannot be effective for PUFs

Thanks for your Attention!

Questions?