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• Hardware determines the fault behavior of  software. 

Fault Injection into Embedded Software
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• Start with a high-level assumption on fault behavior

Traditional Methods (1)
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• There is a gap between assumptions and reality.

Traditional Methods (2)
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• Microprocessor hardware is not fully utilized.

Problems of the Traditional Methods
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• Microprocessor Aware Fault Attack

Proposed Method (1)
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• More practical fault models and efficient injection

Proposed Method (2)

11x
less fault injections
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• 7-Stage RISC Pipeline:

Fault Behavior in a RISC Pipeline (1)

Fetch (F) 
Decode (D)
Register Access (A)
Execute (E)
Memory (F)
Exception (X)
Write-Back (W)

clock
glitch
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• If  E4 has the highest critical path (i.e, fault sensitivity):

Fault Behavior in a RISC Pipeline (2)

Fetch (F) 
Decode (D)
Register Access (A)
Execute (E)
Memory (F)
Exception (X)
Write-Back (W)

clock
glitch
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• Pipeline stalls blind the stalled stages from glitches.

Fault Behavior in a RISC Pipeline (3)

cycle

Fetch (F) 
Decode (D)
Register Access (A)
Execute (E)
Memory (F)
Exception (X)
Write-Back (W)
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• Case Study: 
• Fault Analysis: Differential Fault Intensity Analysis (DFIA) 

• Software: AES

• Hardware: LEON3 Processor

• DFIA [Ghalaty et. al, FDTC’14]:
• Relies on a biased fault behavior

• Gradual fault behavior in proportion to the fault intensity

Case Study
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Creating Fault Sensitivity Model

• Fault sensitivity of  each (instruction, pipeline stage)

LDI
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Determining Target Instructions

• Objective: 
• Biased faults in the AddRoundKey at AES Round 9

AddRoundKey
on LEON3:
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Determining Valid Pipeline Stages (1)

• Analyze each cycle of  execution
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Determining Valid Pipeline Stages (2)

• Propagation of  a biased fault injected into (LDUB3, M)

Fault 
Propagation 

Path for LDUB3
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Determining Valid Pipeline Stages (3)
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Using Fault Sensitivity Model (1)
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Using Fault Sensitivity Model (2)

1 2 3 4 5 6 7 Time(ns)

Valid Fault Injection Targets

Invalid Fault Injection Targets
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Using Fault Sensitivity Model (3)

2 3 4 5 6 7 Time(ns)

7.2ns4.45ns

Valid Fault Injection Targets

Invalid Fault Injection Targets
Valid Tglitch Range 
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Results (1)

• Fault Injection Experiments on a LEON3:
• Implemented on a SPARTAN-6 FPGA

• Clock glitch injection

• A DFIA attack on a AES software program:
• 1 secret key and 1 plaintext
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Results (2)

• Our approach requires ~11x less fault injections.

~ 11x 
Reduction

Total # of
Attacked Cycles

Total # of 
Fault Injections

Traditional Methods 13 1040

Our Method 6 90
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Results (3)

• DFIA retrieves the key byte quicker with our method.

~ 2x reduction
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Conclusions

• For efficient fault attacks on embedded software, use
• micro-architectural properties (i.e. fault sensitivity model)

• architectural properties (i.e. pipeline analysis of  the software)

• With a microprocessor aware fault attack method:

• Possible to tune the injected faults in the software

• ~11x less fault injections

• Traditional methods need a revision



Thank you!
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