
Improving Fault Attacks On Embedded Software
Using RISC Pipeline Characterization

This research was supported through NSF Grant 1441710, Grant 1115839, and through SRC.

FDTC 2015

Bilgiday Yuce, Nahid Farhady Ghalaty, Patrick Schaumont

Virginia Tech

2

• Hardware determines the fault behavior of software.

Fault Injection into Embedded Software

3

• Start with a high-level assumption on fault behavior

Traditional Methods (1)

4

• There is a gap between assumptions and reality.

Traditional Methods (2)

5

• Microprocessor hardware is not fully utilized.

Problems of the Traditional Methods

6

• Microprocessor Aware Fault Attack

Proposed Method (1)

7

• More practical fault models and efficient injection

Proposed Method (2)

11x
less fault injections

8

• 7-Stage RISC Pipeline:

Fault Behavior in a RISC Pipeline (1)

Fetch (F)
Decode (D)
Register Access (A)
Execute (E)
Memory (F)
Exception (X)
Write-Back (W)

clock
glitch

9

• If E4 has the highest critical path (i.e, fault sensitivity):

Fault Behavior in a RISC Pipeline (2)

Fetch (F)
Decode (D)
Register Access (A)
Execute (E)
Memory (F)
Exception (X)
Write-Back (W)

clock
glitch

10

• Pipeline stalls blind the stalled stages from glitches.

Fault Behavior in a RISC Pipeline (3)

cycle

Fetch (F)
Decode (D)
Register Access (A)
Execute (E)
Memory (F)
Exception (X)
Write-Back (W)

11

• Case Study:
• Fault Analysis: Differential Fault Intensity Analysis (DFIA)

• Software: AES

• Hardware: LEON3 Processor

• DFIA [Ghalaty et. al, FDTC’14]:
• Relies on a biased fault behavior

• Gradual fault behavior in proportion to the fault intensity

Case Study

12

Creating Fault Sensitivity Model

• Fault sensitivity of each (instruction, pipeline stage)

LDI

13

Determining Target Instructions

• Objective:
• Biased faults in the AddRoundKey at AES Round 9

AddRoundKey
on LEON3:

14

Determining Valid Pipeline Stages (1)

• Analyze each cycle of execution

15

Determining Valid Pipeline Stages (2)

• Propagation of a biased fault injected into (LDUB3, M)

Fault
Propagation

Path for LDUB3

16

Determining Valid Pipeline Stages (3)

17

Using Fault Sensitivity Model (1)

18

Using Fault Sensitivity Model (2)

1 2 3 4 5 6 7 Time(ns)

Valid Fault Injection Targets

Invalid Fault Injection Targets

19

Using Fault Sensitivity Model (3)

2 3 4 5 6 7 Time(ns)

7.2ns4.45ns

Valid Fault Injection Targets

Invalid Fault Injection Targets
Valid Tglitch Range

20

Results (1)

• Fault Injection Experiments on a LEON3:
• Implemented on a SPARTAN-6 FPGA

• Clock glitch injection

• A DFIA attack on a AES software program:
• 1 secret key and 1 plaintext

21

Results (2)

• Our approach requires ~11x less fault injections.

~ 11x
Reduction

Total # of
Attacked Cycles

Total # of
Fault Injections

Traditional Methods 13 1040

Our Method 6 90

22

Results (3)

• DFIA retrieves the key byte quicker with our method.

~ 2x reduction

23

Conclusions

• For efficient fault attacks on embedded software, use
• micro-architectural properties (i.e. fault sensitivity model)

• architectural properties (i.e. pipeline analysis of the software)

• With a microprocessor aware fault attack method:

• Possible to tune the injected faults in the software

• ~11x less fault injections

• Traditional methods need a revision

Thank you!

24

