DIFFERENTIAL FAULT ANALYSIS OF SHA3-224 AND SHA3-256

Pei LUO¹, Yunsi FEI¹, Liwei ZHANG², A. Adam DING²

1. Electrical & Computer Engineering, Northeastern University Northeastern University Energy-Efficient and Secure Systems Lab (<u>http://nueess.coe.neu.edu</u>)

2. Department of Mathematics, Northeastern University

Northeastern University

Outline

- Motivation and contribution
- Preliminary of SHA-3
- Fault propagation in SHA-3
- Fault injection attacks simulation results
- Conclusion

Motivation and Contribution

- Motivation
 - Security of SHA-3/Keccak is very important
 - Previous work [1]
 - Under single-bit fault model
 - Targets only two modes of SHA-3: SHA3-384 and SHA3-512

Our Contribution

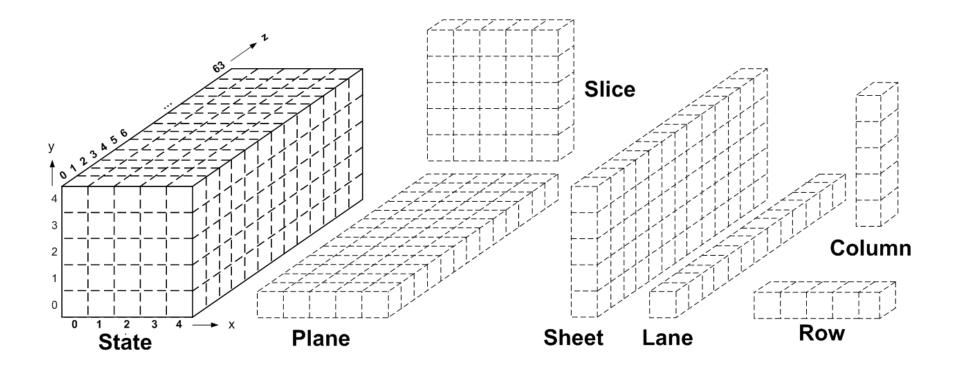
- Extend differential fault analysis to relaxed fault models
- Conquer other two modes of SHA-3: SHA3-224 and SHA3-256

^{1.} Bagheri, Nasour, Navid Ghaedi, and Somitra Kumar Sanadhya. "Differential fault analysis of SHA-3." *International Conference in Cryptology in India*. Springer International Publishing, 2015.

Outline

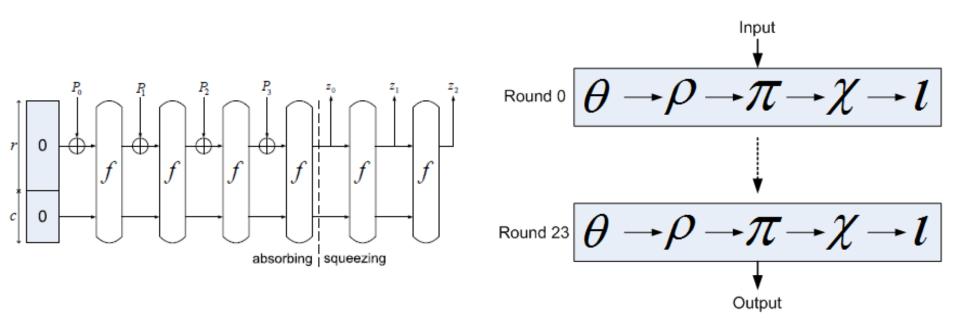
- Motivation and contribution
- Preliminary of SHA-3
- Fault propagation in SHA-3
- Fault injection attacks simulation results
- Conclusion

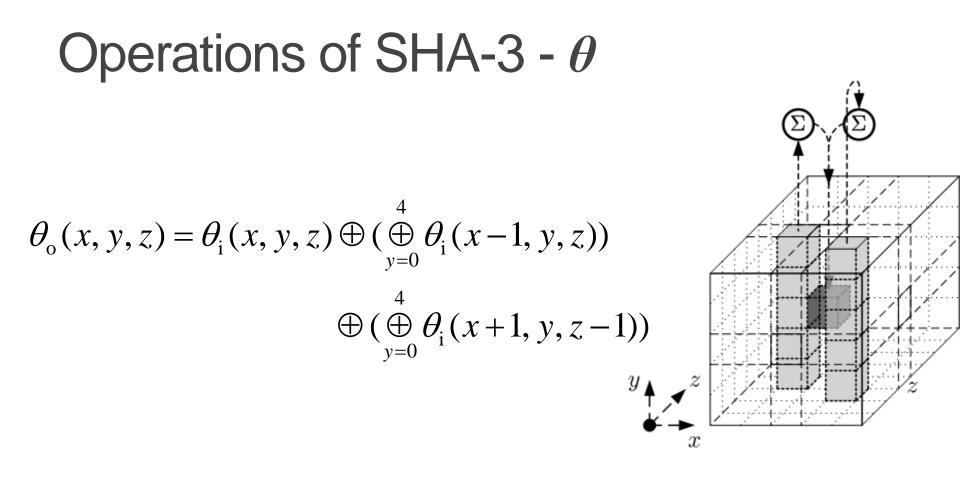
Preliminary of SHA-3



Preliminary of SHA-3

- Sponge function: repeated permutation function, f, for message absorbing and digest squeezing
- One f function for 1600 bits: 24 rounds, 5 operations in each round

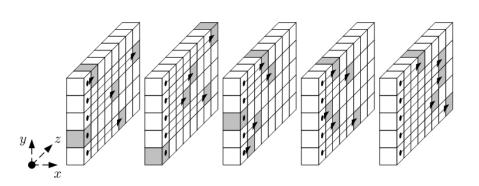


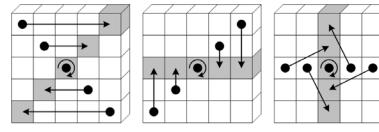


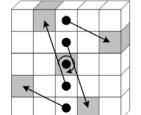
• In another view, one input θ bit will affect 11 output bits

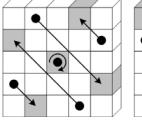
Operations of SHA-3 - permutations

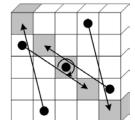
 ρ changes the positions of bits along each lane π changes the positions of bits inside each slice







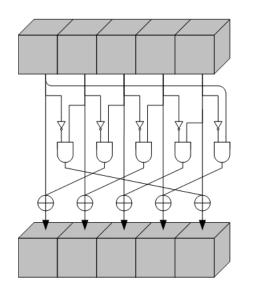




Operations of SHA-3 – non-linear χ

 χ involves nonlinear operations, and it is reversible:

 $\chi_{o}(x, y, z) = \chi_{i}(x, y, z) \oplus (\chi_{i}(x+1, y, z) \cdot \chi_{i}(x+2, y, z))$



 $\chi_{i}(x, y, z) = \chi_{o}(x, y, z) \oplus \chi_{o}(x+1, y, z) \cdot [\chi_{o}(x-1, y, z) \oplus \chi_{o}(x+2, y, z) \oplus \chi_{o}(x-1, y, z) \cdot \chi_{o}(x+3, y, z)]$

Fault Model and Notations

- Attack goal: recover one internal state $-\chi_i^{22}$
- Fault model:
 - Random single-byte faults injected a²²
 - Observable digest *H*, *d* bits for SHA3-*d* function
 - 224 bits for SHA3-224 (three and half lanes on the bottom plane)
 - 256 bits for SHA3-256 (four lanes on the the bottom plane)
 - Attacker can inject multiple faults for the same message

$$\stackrel{\iota_{o}^{21}}{\longrightarrow} \left[\begin{array}{c} \theta_{i}^{22} & \theta_{o}^{22} \\ \theta \end{array} \right] \xrightarrow{\rho} \mathcal{T} \longrightarrow \mathcal{T} \longrightarrow \mathcal{X} \longrightarrow \mathcal{I}^{22} \xrightarrow{\chi_{o}^{22}} \mathcal{I}^{22} \xrightarrow{\chi_{o}^{23}} \theta_{o}^{23} \xrightarrow{\chi_{o}^{23}} \mathcal{I}^{23} \xrightarrow{\chi_{o}^{23}} \xrightarrow{\chi_{o}^{23}} \mathcal{I}^{23} \xrightarrow{\chi_{o}^{23}} \mathcal{I}^{23} \xrightarrow{\chi_{o}^{23}} \mathcal{I}^{23} \xrightarrow{\chi_{o}^{23}} \mathcal{I}^{23} \xrightarrow{\chi_{o}^{23}} \mathcal{I}^{23} \xrightarrow{\chi_{o}^{23}} \xrightarrow{\chi_{o}^{23}} \mathcal{I}^{23} \xrightarrow{\chi_{o}^{23}} \xrightarrow{\chi_{o}^{23}} \mathcal{I}^{23} \xrightarrow{\chi_{o}^{23}} \xrightarrow{\chi_{o}^{23}} \mathcal{I}^{23} \xrightarrow{\chi_{o}^{23}} \xrightarrow{\chi_{o}^{23}} \xrightarrow{\chi_{o}^{23}} \mathcal{I}^{23} \xrightarrow{\chi_{o}^{23}} \xrightarrow{\chi_{o}$$

Outline

- Motivation and contribution
- Preliminary of SHA-3
- Fault propagation in SHA-3
- Fault injection attacks simulation results
- Conclusion

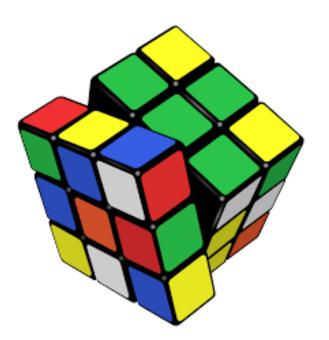
Attack Method

- Attack method
 - Inject a random fault at an internal state (θ_i^{22})
 - Observe the pair of original digest and faulty digest under this fault injection (H and H')
 - Select an internal state as the comparison point (χ_i^{23})
 - Derive the differential (fault) on the comparison state from the observed pair of digest reversely $(\Delta \chi_i^{23})$
 - Compare this differential against the fault signatures under all possible faults (FS[P][F])
 - Identify the unique fault injected and recover some internal state bits

$$\stackrel{\iota_{o}^{21}}{\longrightarrow} \left[\begin{array}{c} \theta_{i}^{22} & \theta_{o}^{22} \\ \theta \end{array} \right] \xrightarrow{\rho} \rho \longrightarrow \pi \longrightarrow \chi \longrightarrow \iota^{22} \\ \theta \longrightarrow \rho \longrightarrow \pi \longrightarrow \chi \longrightarrow \iota^{22} \\ \theta \longrightarrow \rho \longrightarrow \pi \longrightarrow \chi \longrightarrow \iota^{23} \\ \theta \longrightarrow \rho \longrightarrow \pi \longrightarrow \chi \longrightarrow \iota^{23} \\ \theta \longrightarrow \rho \longrightarrow \pi \longrightarrow \chi \longrightarrow \iota^{23} \\ \theta \longrightarrow \rho \longrightarrow \pi \longrightarrow \chi \longrightarrow \iota^{23} \\ \theta \longrightarrow \rho \longrightarrow \pi \longrightarrow \chi \longrightarrow \iota^{23} \\ \theta \longrightarrow \rho \longrightarrow \pi \longrightarrow \chi \longrightarrow \iota^{23} \\ \theta \longrightarrow \rho \longrightarrow \pi \longrightarrow \chi \longrightarrow \iota^{23} \\ \theta \longrightarrow \rho \longrightarrow \pi \longrightarrow \chi \longrightarrow \iota^{23} \\ \theta \longrightarrow \rho \longrightarrow \pi \longrightarrow \chi \longrightarrow \iota^{23} \\ \theta \longrightarrow \rho \longrightarrow \pi \longrightarrow \chi \longrightarrow \iota^{23} \\ \theta \longrightarrow \rho \longrightarrow \pi \longrightarrow \chi \longrightarrow \iota^{23} \\ \theta \longrightarrow \rho \longrightarrow \pi \longrightarrow \chi \longrightarrow \iota^{23} \\ \theta \longrightarrow \rho \longrightarrow \pi \longrightarrow \chi \longrightarrow \iota^{23} \\ \theta \longrightarrow \rho \longrightarrow \pi \longrightarrow \chi \longrightarrow \iota^{23} \\ \theta \longrightarrow \rho \longrightarrow \pi \longrightarrow \chi \longrightarrow \iota^{23} \\ \theta \longrightarrow \rho \longrightarrow \pi \longrightarrow \chi \longrightarrow \iota^{23} \\ \theta \longrightarrow \rho \longrightarrow \pi \longrightarrow \chi \longrightarrow \iota^{23} \\ \theta \longrightarrow \rho \longrightarrow \pi \longrightarrow \chi \longrightarrow \iota^{23} \\ \theta \longrightarrow \rho \longrightarrow \pi \longrightarrow \chi \longrightarrow \iota^{23} \\ \theta \longrightarrow \rho \longrightarrow \pi \longrightarrow \chi \longrightarrow \iota^{23} \\ \theta \longrightarrow \rho \longrightarrow \pi \longrightarrow \chi \longrightarrow \iota^{23} \\ \theta \longrightarrow \rho \longrightarrow \pi \longrightarrow \chi \longrightarrow \iota^{23} \\ \theta \longrightarrow \rho \longrightarrow \pi \longrightarrow \chi \longrightarrow \iota^{23} \\ \theta \longrightarrow \rho \longrightarrow \pi \longrightarrow \iota^{23} \\ \theta \longrightarrow \rho \longrightarrow \iota^{23} \\ \theta \longrightarrow \iota^{23} \\ \theta \longrightarrow \rho \longrightarrow \chi \longrightarrow \iota^{23} \\ \theta \longrightarrow \iota^{23} \\ \theta$$

Fault Signature - Fault Propagation in SHA-3

- We define fault signature (FS) as the differential between the original state and faulty state under a specific fault injection
- Previous block ciphers like AES are operated at byte level
- SHA-3 is operated at bit level



Fault Propagation by SHA-3 Operations

 Operations that do not change the value of FS bits (ρ, π, and ι)

$$\Delta \rho_o = \rho(\Delta \rho_i) \qquad \Delta \pi_o = \pi(\Delta \pi_i) \qquad \Delta \iota_o = \Delta \iota_i$$

- Operations that the charge the value of FS bits
 - Operation θ : FP_{χ}
 - Operation χ , denote the fault propagation function as $\Delta \chi_i^{23} = \pi \circ \rho \circ \theta \circ FP_{\chi}(\Delta \chi_i^{22})$

 $\theta_i^{22}(0,0,0)$

• Example in this talk: fault injected at $\Delta \theta_i^{22}(0,0,0) = 1$ while other bits are 0

Faults Signature at χ_i^{22}

x=0:

x=1:

x=2:

x=4:

Fault Propagation of χ^{22}

Fault at χ input	Fault signature at output
$\Delta \chi_i^{22}([x:x+2],y,z)$	$FS_{\chi_o^{22}}(x, y, z)$
[1,0,0]	1
[0,1,0]	$\chi_i^{22}(x+2, y, z)$
[0,0,1]	$\overline{\chi_i^{22}(x+1,y,z)}$
[1,1,0]	$\overline{\chi_i^{22}(x+2, y, z)}$
[0,1,1]	$\chi_i^{22}(x+1, y, z) \oplus \chi_i^{22}(x+2, y, z)$
[1,0,1]	$\chi_i^{22}(x+1, y, z)$
[1,1,1]	$\overline{\chi_i^{22}(x+1, y, z) \oplus \chi_i^{22}(x+2, y, z)}$

Fault Signature at χ_i^{23}

- **xx1**00000 00**xx**000**1** 00000**x1**0 0000**x**000 0000000 0**x**00**x1x**0 00000000 0000000 $E(0,0) = 1 \oplus \chi_i^{22}(1,0,0); E(0,1) = \chi_i^{22}(1,2,1); E(0,10) = 1 \oplus \chi_i^{22}(2,2,9); E(0,11) = \chi_i^{22}(3,3,10); E(0,46) = 1 \oplus \chi_i^{22}(2,1,45);$ $E(0,21) = 1 \oplus \chi_i^{22}(0,1,21); E(0,28) = \chi_i^{22}(1,3,28); E(0,41) = \chi_i^{22}(3,4,40); E(0,44) = 1 \oplus \chi_i^{22}(0,0,44) \oplus \chi_i^{22}(2,0,44);$
- $0 \mathbf{x} 000000 \ \mathbf{1} 0000000 \ \mathbf{0} 0000 \mathbf{x} \mathbf{1} 00 \ \mathbf{x} \mathbf{x} \mathbf{x} 00000 \ \mathbf{0} 0000000 \ \mathbf{0} 0000 \ \mathbf{1} 0 \mathbf{x} \ \mathbf{0} 0000 \mathbf{x} \mathbf{1} 0 \mathbf{x} \mathbf{0} 000 \mathbf{x} 00$
- **1**000000 **x**000000 000**x**000**1 x1**00000 0000000 0000**xxx**0 0000**xx**00 000**x**000 $E(2,8) = 1 \oplus \chi_i^{22}(4,3,28); E(2,19) = \chi_i^{22}(3,4,40); E(2,24) = 1 \oplus \chi_i^{22}(2,1,45); E(2,44) = 1 \oplus \chi_i^{22}(4,0,0); E(2,45) = 1 \oplus \chi_i^{22}(4,2,1);$ $E(2,46) = \chi_i^{22}(0,4,2); E(2,52) = 1 \oplus \chi_i^{22}(2,2,9) \oplus \chi_i^{22}(4,2,9); E(2,53) = 1 \oplus \chi_i^{22}(3,3,10); E(2,59) = \chi_i^{22}(0,0,15);$

0000000 000000**xx x**00000**1** 0**x**000**x**00 000**x**000 00**x**10000 000000**x** 000**x**000 $E(4,14) = 1 \oplus \chi_i^{22}(4,0,0); E(4,15) = \chi_i^{22}(4,2,1); E(4,16) = \chi_i^{22}(0,4,2); E(4,25) = 1 \oplus \chi_i^{22}(1,3,10); E(4,29) = \chi_i^{22}(0,0,15);$ $E(4,36) = \chi_i^{22}(2,1,21); E(4,42) = 1 \oplus \chi_i^{22}(4,3,28); E(4,55) = 1 \oplus \chi_i^{22}(1,4,40); E(4,59) = 1 \oplus \chi_i^{22}(2,0,44);$

• Each FS bit can be denoted as '0', '1', 'x'

• 'x' means it depends on $some^{2^2}$ bits

$\Delta \chi_i^{23}$ Bits Recovery from the Digests

 χ is reversible:

 $a_{i} = a_{o} \oplus \overline{b_{o}} \cdot (e_{o} \oplus c_{o} \oplus e_{o} \cdot d_{o})$ $b_{i} = b_{o} \oplus \overline{c_{o}} \cdot (a_{o} \oplus d_{o} \oplus a_{o} \cdot e_{o})$ for examples
in the formula is the formula in the examples in the

For example, for $a_i = a_o \oplus \overline{b_o} \cdot (e_o \oplus c_o \oplus e_o \cdot d_o)$: If $d_o = 1$, $a_i = a_o \oplus \overline{b_o} \cdot c_o$; If $b_o = 1$, $a_i = a_o$; The probability of recovering a_i with the output row known is : $P(d_o = 1 | b_o = 1) = 0.75$

		-		d_i		
	a_i	b_i	C_i	1-32	33-64	e_i
SHA3-224	0.75	0.75	0.5	0.5	0	0
SHA3-256	0.75	0.75	0.5	0.5	0.5	0

$\Delta \chi_i^{23}$ bits recovery – a simple method

$$\begin{cases} (a_i^0, b_i^0, c_i^0, d_i^0, e_i^0) = \chi^{-1}(a_o, b_o, c_o, d_o, 0) \\ (a_i^1, b_i^1, c_i^1, d_i^1, e_i^1) = \chi^{-1}(a_o, b_o, c_o, d_o, 1) \end{cases}$$

If $a_i^0 = a_i^1$, a_i does not depend on e_o , attacker can recover a_i ; If $a_i^0 \neq a_i^1$, a_i depends on e_o , attacker cannot recover a_i .

	Number of recovered bits				
	χ_i^{23}	$\Delta \chi_i^{23}$			
SHA3-224	111.84	93.68			
SHA3-256	160.12	136.42			

Outline

- Motivation and contribution
- Preliminary of SHA-3
- Fault propagation in SHA-3
- Fault injection attacks simulation results
- Conclusion

Fault Identification

- $\Delta \chi_i^{23}$ and $FS_{\chi_i^{23}}$ both have two group
 - {black}: bits that are flipped
 - {white}: bits that are not flipped

$$\begin{cases} FS_{\chi_i^{23}}[P][F].white \subseteq \Delta \chi_i^{23}.white \\ FS_{\chi_i^{23}}[P][F].black \subseteq \Delta \chi_i^{23}.black \end{cases}$$

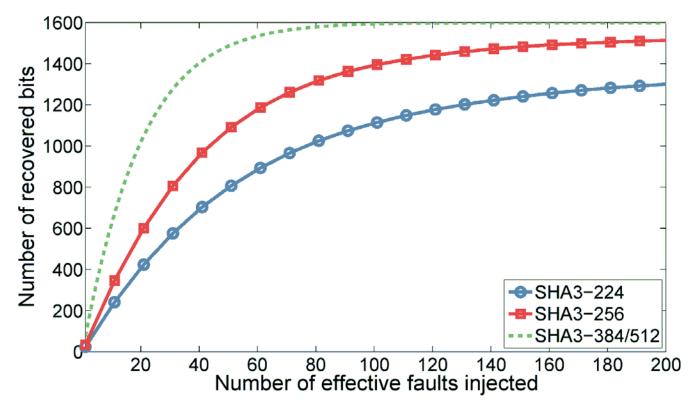
white black
$$\Delta \chi_i^{23}$$

White Grey Black FS_{χ_i}

• $FS_{\chi_i^{23}}[P][F]$ has another group $\sum_{\chi_i^{23}}[P][F]$.grey • 'x' bits can be either 0 or 1,

$$\begin{cases} \Delta \chi_i^{23}.white \subseteq \{FS_{\chi_i^{23}}[P][F].white \bigcup FS_{\chi_i^{23}}[P][F].grey\} \\ \Delta \chi_i^{23}.black \subseteq \{FS_{\chi_i^{23}}[P][F].black \bigcup FS_{\chi_i^{23}}[P][F].grey\} \end{cases}$$

Fault Identification and Bits Recovery



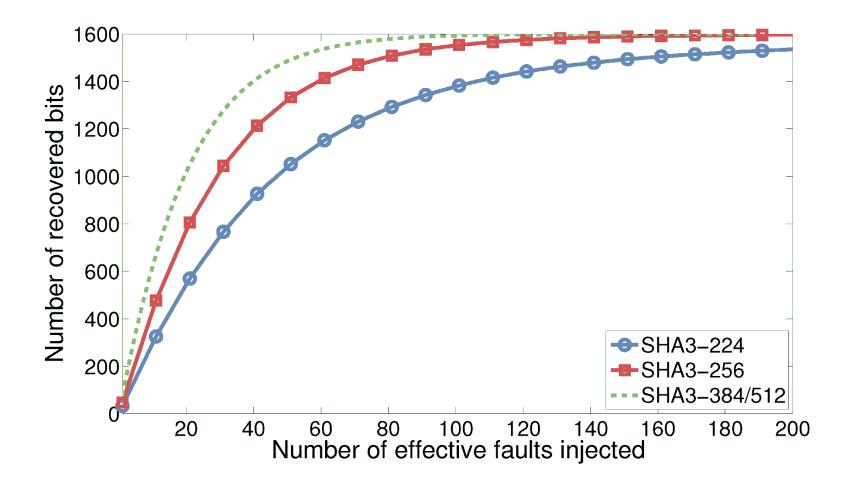
	Number of re	covered bits	Probability of
	χ_i^{23}	$\Delta \chi_i^{23}$	unique fault
SHA3-224	111.84	93.68	30.67%
SHA3-256	160.12	136.42	66.61%

Improvement

- The proposed method
 - Can efficiently recove χ_i^{23} bits
 - Can identify the injected fault and then $reco\chi_{e}^{22}$ bits
 - Attacks on SHA3-224/256 less efficient than SHA3-384/512
 - Limited number of $\Delta \chi_i^{23}$ and $FS_{\chi_i^{23}}$ bits

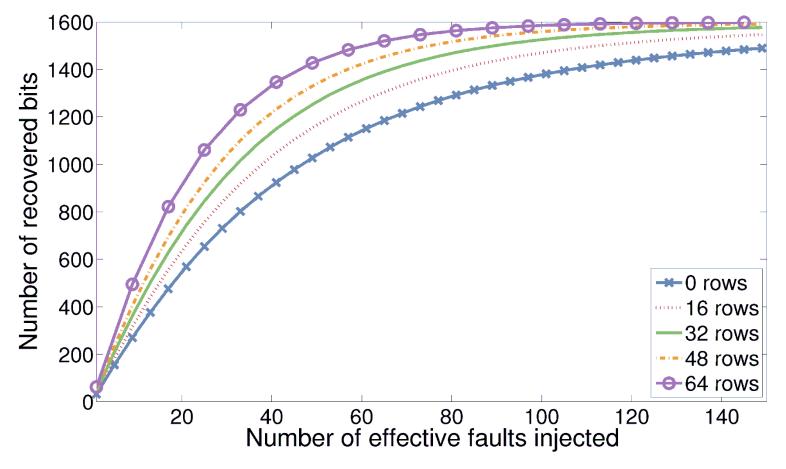
Improvement

- Make use of $FS_{\chi_c^{23}}$ together with $FS_{\chi_c^{23}}$
 - $FS_{\chi_{a}^{23}}$ contains extra information
- Inject faults at \mathcal{P}_i^{23} to recover more bits \mathcal{A}_i^{23} and $\Delta \chi_i^{23}$
 - More $\Delta \chi_i^{23}$ bits contain more information



Improvement – Recover more χ_i^{23}

• Assume different number of t_i^{23} rows recovered for SHA3-224



Outline

- Motivation and contribution
- Preliminary of SHA-3
- Fault propagation in SHA-3
- Fault injection attacks simulation results
- Conclusion

Conclusion and Future Work

Conclusion

- The proposed method can effectively conquer SHA3-224 and SHA3-256
- The proposed improvement method can further improve the efficiency
- SHA3-224 and SHA3-256 are more difficult to conquer than SHA3-384 and SHA3-512 under DFA

Future work

- More relaxed fault model
- Different fault injection position
- Further improve effective fault ratio

Acknowledgement

- This work was supported in part by National Science Foundation under grants SaTC-1314655 and MRI-1337854.
- Simulation code used in this paper is available at <u>http://tescase.coe.neu.edu/</u>

Thanks!