Improved Fault Analysis on SIMON Block Cipher Family

Hua Chen Jingyi Feng Vincent Rijmen Yunwen Liu Limin Fan Wei Li

Presenter: Svetla Nikova

ESAT/COSIC, KU Leuven, and iMinds, Belgium

FDTC 2016, 16 Aug, 2016

- SIMON is a lightweight block cipher family proposed in 2013.
- It employs a Feistel-type structure with 2*n*-bit block size and *mn*-bit key size.

Parameter list for the instances of SIMON family

block	key	word	key	rounds
size $2n$	size	size n	words m	T
	mn			
32	64	16	4	32
48	72	24	3	36
48	96	24	4	36
64	96	32	3	42
64	128	32	4	44
96	96	48	2	52
96	144	48	3	54
128	128	64	2	68
128	192	64	3	69
128	256	64	4	72

- Since SIMON is presented, its implementation security has also caught attention, such as Fault Attack.
- In FDTC 2014, the first Fault Attack against SIMON was presented.
 - Byte and bit injection fault model are both adopted.
 - ► For the keysize *mn*, the input of *T-2*-th, *T-3*-th, *T-4*-th,...,*T-m-1*-th round is required to be injected faults respectively.
 - ► The average number of faults for the byte and bit injection model is respectively mn/8 or mn/2 if the injection position can be controlled.
 - When the injection position can be selected randomly, the theoretical estimation of injection numbers was not given.

- In ICISC 2014, the second Fault Attack against SIMON was presented.
 - Instead of byte or bit fault model, *n*-bit fault model is adopted.(Each bit of a *n*-bit word is flipped with the probability 0.5)
 - ► For the keysize *mn*, the input of *T*-2-th, *T*-3-th, *T*-4-th, ..., *T*-*m*-1-th round is still required to be injected faults respectively.
 - A theoretical estimation of average injection numbers was given.

- In FDTC 2015, the third Fault Attack against SIMON was proposed.
 - Bit fault model is adopted.
 - ▶ For the keysize *mn*, the first injected round is *T*-3-th round instead of *T*-2-th round and the total number of injected rounds is reduced half.
 - A theoretical estimation of average injection numbers was given.

Related work of fault attacks on SIMON:

Related work	Fault model	Number of injected rounds
FDTC 2014	Random byte/bit model	m
ICISC 2014	Random <i>n</i> -bit model	m
FDTC 2015	Random bit model	$\lceil m/2 \rceil$

Our goal:

- Number of injected rounds : 1
- Reduce the injection numbers
- Give the theoretical estimation of injection numbers under random byte fault model, which is not given in former work.

Some properties of SIMON

Property 1 Given a $t(1 \le t \le n)$ -bit difference $e = e_0e_1e_2, ...e_{t-1}$, if it is induced into L^0 from the (s - t + 1)-th to the *s*-th bit position $(0 \le s \le n - 1)$, (that is, $\Delta L^0_{s-t+1} \Delta L^0_{s-t+2}, ..., \Delta L^0_s = e)$, then for $1 \le j \le T/2$, after the encryption of *r* rounds, ΔL^r satisfies:

When r = 2j - 1, $\Delta L_i^r = 0$, $s \le i \le s + (n - t - 16j + 8)$ (1) When r = 2j, $\int \dot{\Delta} L_i^r = 0$, $s + 1 \le i \le s + (n - t - 16j)$ (2)

$$\begin{cases} \Delta L_i^r = e_{t-1}, i = s, \ j < (n-t)/16 \end{cases}$$
(2)

Some properties of SIMON

Property 1 gives a kind of differential propagation path.

Some properties of SIMON

Property 1 gives a kind of differential propagation path.

Rounds r	ΔL	ΔR
0	$00000000e_1e_2e_3e_t00$	00000000000000000
1	0000 * * * * * * * * *000	$00000000e_1e_2e_3e_t00$
2	$000********e_t00$	0000 * * * * * * * * * * 000
3	00* * * * * * * * * * * 000	000 * * * * * * * * * $e_t 00$
4	00**********************************	00* *** *** *** 000
:	÷	:

The differential propagation path shows:

- If the rightmost bit position of e is s, then before e is fully diffused, the s-th bit difference value of ΔL remains unchanged after even rounds' encryption.
- At the same time, e_t is followed by a number of consecutive 0s.

Some properties of SIMON

Property 2 For two *n*-bit differences $X = x_0x_1, ..., x_{n-1}$ and $\Delta X = \Delta x_0 \Delta x_1, ..., \Delta x_{n-1}$, let $\Delta Y = \Delta y_0 \Delta y_1, ..., \Delta y_{n-1} = F(X) \oplus F(X \oplus \Delta X)$, then some bits of $X = x_0x_1x_2, ..., x_{n-1}$ can be deduced through some bit relations between ΔX .

Property 2 can help to recover some bits of intermediate values, which can further reveal some bits of round keys.

- Fault model: random byte fault
- Fault injection location:L^{T-m-1} (m=2,3 or 4 depending on the key size)

Attack procedure:

1 Select a plaintext and encrypt it correctly.

- 1 Select a plaintext and encrypt it correctly.
- 2 Inject a byte fault in L^{T-m-1} .

- 1 Select a plaintext and encrypt it correctly.
- 2 Inject a byte fault in L^{T-m-1} .
- 3 ΔL^{T-1} and ΔR^{T-1} can be easily obtained from the structure of Feistel.

- 1 Select a plaintext and encrypt it correctly.
- 2 Inject a byte fault in L^{T-m-1} .
- 3 ΔL^{T-1} and ΔR^{T-1} can be easily obtained from the structure of Feistel.
- 4 By using property 1, the attacker can determine the rightmost bit injection position with the value 1. (e.g, if $\Delta L_s^0 = 1$, then s can be determined).

Attack procedure:

5 Compute ΔL^{T-2} and $\Delta L^{T-1} \oplus \Delta R^{T-2}$. ΔL^{T-2} , ΔL^{T-1} can be easily obtained. The whole value of ΔR^{T-2} is unknown, but some bits are 0s according to property 1. So $\Delta L^{T-1} \oplus \Delta R^{T-2}$ can be partially deduced.

- 5 Compute ΔL^{T-2} and $\Delta L^{T-1} \oplus \Delta R^{T-2}$. ΔL^{T-2} , ΔL^{T-1} can be easily obtained. The whole value of ΔR^{T-2} is unknown, but some bits are 0s according to property 1. So $\Delta L^{T-1} \oplus \Delta R^{T-2}$ can be partially deduced.
- 6 By using property 2, some bits of L^{T-2} can be recovered, which can directly deduce some bits of K^{T-1} .

- 5 Compute ΔL^{T-2} and $\Delta L^{T-1} \oplus \Delta R^{T-2}$. ΔL^{T-2} , ΔL^{T-1} can be easily obtained. The whole value of ΔR^{T-2} is unknown, but some bits are 0s according to property 1. So $\Delta L^{T-1} \oplus \Delta R^{T-2}$ can be partially deduced.
- 6 By using property 2, some bits of L^{T-2} can be recovered, which can directly deduce some bits of K^{T-1} .
- 7 By repeating Step 1 to Step 6, the whole value of K^{T-1} can be extracted gradually.

Attack procedure:

8 To recover the whole master key, K^{T-2} also requires to be recovered when m = 2. By partially decrypting the ciphertexts with K^{T-1} , L^{T-1} and R^{T-1} can be obtained.

- 8 To recover the whole master key, K^{T-2} also requires to be recovered when m = 2. By partially decrypting the ciphertexts with K^{T-1} , L^{T-1} and R^{T-1} can be obtained.
- 9 By executing the similar steps as Step 2 to Step 7, K^{T-2} can be recovered.

- 8 To recover the whole master key, K^{T-2} also requires to be recovered when m = 2. By partially decrypting the ciphertexts with K^{T-1} , L^{T-1} and R^{T-1} can be obtained.
- 9 By executing the similar steps as Step 2 to Step 7, K^{T-2} can be recovered.
- 10 For m = 3 or m = 4, additional round keys require to be recovered, and they can be revealed by the similar steps as Step 8 to Step 9.

Calculation procedure:

1 Calculate the probability that $\Delta L_i^{T-2} = 1$ with the fault value e injected from the (s-7)-th to s-th bit.

Calculation procedure:

- 1 Calculate the probability that $\Delta L_i^{T-2} = 1$ with the fault value e injected from the (s-7)-th to s-th bit.
- 2 According to property 2, calculate the probability that L_i^{T-2} can be recovered after the fault injection. (Denoted by $U_{i,s,e}$.)

3 Calculate the number of the fault injections required to recover all the bits of L^{T-2} (Denoted by f_n)

- 3 Calculate the number of the fault injections required to recover all the bits of L^{T-2} (Denoted by f_n)
 - Denote by q_i the probability that L^{T-2}_i is recovered considering all the (s, e) combinations.

$$q_i = \frac{1}{255n} \sum_{s=0}^{n-1} \sum_{e=1}^{255} U_{i,s,e}$$

- 3 Calculate the number of the fault injections required to recover all the bits of L^{T-2} (Denoted by f_n)
 - ▶ Denote by q_i the probability that L^{T-2}_i is recovered considering all the (s, e) combinations.

$$q_i = \frac{1}{255n} \sum_{s=0}^{n-1} \sum_{e=1}^{255} U_{i,s,e}$$

• q_i^l represents the probability that L_i^{T-2} is recovered after l fault injections.

$$q_i^l = 1 - (1 - q_i)^l$$

- 3 Calculate the number of the fault injections required to recover all the bits of L^{T-2} (Denoted by f_n)
 - Denote by q_i the probability that L^{T-2}_i is recovered considering all the (s, e) combinations.

$$q_i = \frac{1}{255n} \sum_{s=0}^{n-1} \sum_{e=1}^{255} U_{i,s,e}$$

• q_i^l represents the probability that L_i^{T-2} is recovered after l fault injections.

$$q_i^l = 1 - (1 - q_i)^l$$

► Finally,

$$f_n = \sum_{l=1}^{\infty} (Q^l - Q^{l-1})l, \quad Q^0 = 1$$

4 After L^{T-2} is recovered, K^{T-1} can be deduced directly. In addition, the same correct and faulty ciphertexts to recover L^{T-2} are also used to recover $L^{T-3},...,L^{T-m-1}$, which corresponds to $K^{T-2},...,K^{T-m}$ respectively. So the total number of the fault injections to extract the master key is about f_n .

4 After L^{T-2} is recovered, K^{T-1} can be deduced directly. In addition, the same correct and faulty ciphertexts to recover L^{T-2} are also used to recover $L^{T-3},...,L^{T-m-1}$, which corresponds to $K^{T-2},...,K^{T-m}$ respectively. So the total number of the fault injections to extract the master key is about f_n .

SIMON $2n/mn$	f_n
SIMON64/96	27.97
Simon96/96	33.57
SIMON96/144	46.93
SIMON128/128	48.23
SIMON128/192	67.18
SIMON128/256	89.21

Applicability and Extendibility Analysis

• For SIMON with n = 96 or 128, our attack also works when faults are injected in the location earlier than the (T - m - 1)-th round.

Applicability and Extendibility Analysis

- For SIMON with n = 96 or 128, our attack also works when faults are injected in the location earlier than the (T m 1)-th round.
- For SIMON32/64, SIMON48/72, SIMON48/96 and SIMON64/128, our attack can not extract the whole master key with a fault injected into only one intermediate round.

Applicability and Extendibility Analysis

- For SIMON with n = 96 or 128, our attack also works when faults are injected in the location earlier than the (T m 1)-th round.
- For SIMON32/64, SIMON48/72, SIMON48/96 and SIMON64/128, our attack can not extract the whole master key with a fault injected into only one intermediate round.
- Besides random byte fault model, our attack is also applicable to random *t*-bit fault model with the similar attack procedure.

PC verification

PC verification

• Experimental number of the fault injections

SIMON2n/mn	Random n-bit model	Random bit model		Random byte model	
	ICISC 2014	FDTC 2014	FDTC 2015	FDTC 2014	This paper
SIMON64/96	10.45	189.44	126.29	39	31.57
SIMON96/96	7.46	210.24	105.12	42	35.08
SIMON96/144	11.19	315.36	210.24	63	50.84
SIMON128/128	7.82	299.68	149.84	60	50.55
SIMON128/192	11.73	449.52	299.68	90	72.88
SIMON128/256	15.64	599.36	299.68	120	104.82

PC verification

•	Experimental	number	of the	fault	injections

Simon2n/mn	Random n-bit model	Random bit model		Random byte model	
	ICISC 2014	FDTC 2014	FDTC 2015	FDTC 2014	This paper
Simon64/96	10.45	189.44	126.29	39	31.57
Simon96/96	7.46	210.24	105.12	42	35.08
Simon96/144	11.19	315.36	210.24	63	50.84
Simon128/128	7.82	299.68	149.84	60	50.55
Simon128/192	11.73	449.52	299.68	90	72.88
Simon128/256	15.64	599.36	299.68	120	104.82

• Round locations of the fault injections

SIMON2n/mn	Random n-bit model	Random bit model		Random byte model	
	ICISC 2014	FDTC 2014	FDTC 2015	FDTC 2014	This paper
Simon64/96	L^{38}, L^{39}, L^{40}	L^{38}, L^{39}, L^{40}	L^{38}, L^{39}	L^{38}, L^{39}, L^{40}	L^{38}
SIMON96/96	L^{49}, L^{50}	L^{49}, L^{50}	L^{49}	L^{49}, L^{50}	L^{49}
SIMON96/144	L^{50}, L^{51}, L^{52}	L^{50}, L^{51}, L^{52}	L^{50}, L^{51}	L^{50}, L^{51}, L^{52}	L^{50}
SIMON128/128	L^{65}, L^{66}	L^{65}, L^{66}	L^{65}	L^{65}, L^{66}	L^{65}
SIMON128/192	L^{65}, L^{66}, L^{67}	L^{65}, L^{66}, L^{67}	L^{65}, L^{66}	L^{65}, L^{66}, L^{67}	L^{65}
SIMON128/256	$L^{67}, L^{68}, L^{69}, L^{70}$	$L^{67}, L^{68}, L^{69}, L^{70}$	L^{67}, L^{69}	$L^{67}, L^{68}, L^{69}, L^{70}$	L^{67}

Summary

• Compared with the previous work, our attack successfully reduces the number of injected round locations to 1 for six instances of SIMON.

Summary

- Compared with the previous work, our attack successfully reduces the number of injected round locations to 1 for six instances of SIMON.
- We also give a theoretical estimation of data complexity, which shows less fault injections are required in our attack compared with other attacks under the same fault model.

Summary

- Compared with the previous work, our attack successfully reduces the number of injected round locations to 1 for six instances of SIMON.
- We also give a theoretical estimation of data complexity, which shows less fault injections are required in our attack compared with other attacks under the same fault model.
- Our method can also be extended to the random *t*-bit model.

Thank you!