Attack on DFA protected AES by Simultaneous Laser Fault Injections

<u>Bodo Selmke</u>^a, Johann Heyszl^a, Georg Sigl^b, 08/16/2016

^aFraunhofer Institue AISEC ^bTechnische Universität München

- Laser Fault Injection
- Protected Hardware Implementation
- Symmetric algorithm (AES)

FA Countermeasures

- 1. Direct detection by specialized sensors
- 2. Handling of faults with various forms of redundancy (Time, Space)

Detection Raise an alarm (interrupt signal) \rightarrow Discard output of faulty ciphertext

Infection Transform ("infect") ciphertext

 \rightarrow Render analysis of output by DFA impossible

Our practical Investigation

Demonstrate successful attack against AES with duplication-based countermeasure using two simultaneous laser shots

- AES on FPGA
- Protection by a countermeasure based on hardware duplication
- Determine locations for Laser Fault Injection → AES state registers
- Carry out Fault Injections into AES
- Apply DFA on record of output data
 - \rightarrow Determine if attack is feasible (We used the DFA by Saha et al.)

Redundant AES Design Features

AES core

- 2 AES instances, one clock cycle per round
- Infection Countermeasure based on the design by Lomné et al.
- 48 MHz clock frequency

Redundant AES Design

Infection Scheme

Redundant AES Design

Redundant AES Design

Infection Scheme

2xLFI on AES | Bodo Selmke | 08/16/2016 | 7

Redundant AES Design Features cont'd

AES core

- 2 AES instances, one clock cycle per round
- Infection Countermeasure based on the design by Lomné et al.
- 48 MHz clock frequency

Generation of Trigger Signal

- Implemented on FPGA
- Adjustable delay counters, initiated with the start-signal of the AES

Device Under Test

- Xilinx Spartan-6 FPGA
- 45 nm feature size

Used Laser System

- 2× infrared (1064 nm) laser with 800 ps pulse length
- Beams independently positionable by laser scanners
- Combination of both beams by beam splitter
- 4 µm spot size

Preliminary Investigation Locating the AES State Registers

- Attack requires knowledge of register location
- Use of dedicated FPGA-design to locate individual flip-flops
- Precision of the Laser sufficient to inject matching fault?
- 3-Step Approach to find the flip-flops of interest:
 - 1. Locate a BRAM near the area where the relevant slices are assumed
 - 2. Evaluate optimal focal plane for maximum precision
 - 3. Scan area to locate the specific flip-flops

2xLFI on AES | Bodo Selmke | 08/16/2016 | 11

- scan field $60 \, \mu m \times 30 \, \mu m$
- step size 200 nm

 2 laser shots per location: flip-flops initialized to 0 and 1

2xLFI on AES | Bodo Selmke | 08/16/2016 | 12 © Fraunhofer

- scan field $60 \, \mu m \times 30 \, \mu m$
- step size 200 nm

 2 laser shots per location: flip-flops initialized to 0 and 1

2xLFI on AES | Bodo Selmke | 08/16/2016 | 13 © Fraunhofer

step size 200 nm

2 laser shots per location:
 flip-flops initialized to **0** and **1**

Performing the attack on the AES Procedure

Preparation

- Positioning of both lasers according to the previous results
- Evaluation of correct timing for the fault injection

Attack

- Start AES computation
- Inject fault into state registers during round 7
- Record output
- Test if attack was successful (Perform DFA based on ciphertext pair)

Performing the attack on the AES Results

Shots	Non-Exploitable Faults	Exploitable Faults	Attack Success Ratio
80000	21845	229	0.29 %

- Low success rate
- Single successful FI is sufficient
- Time to success: ≈ 5min

Problems:

- Jitter of laser shot
- Drift of laser spot location

Performing the attack on the AES Feasibility of the Attack in practice

- The attack required knowledge of the location of the state registers
 - Activity-Analysis can reveal location of the AES cores
 - Reverse-Engineering Methods can identify locations of registers
- Matching flip-flops can be found by exhaustive search (128 combinations)
- Stress on the device is low enough (All FI on single DUT)

Discussion Countermeasures

Prevent this attack on state registers:

- Fault Space Transformation (Patranabis et al.^a)
 - Add an additional MixColumns/InvMixColumns Operation to one branch
 - The associated state register stores MixColumns-transformed version of state
 - FI in the combinatorial path might be feasible
- Parity Check for altered register contents

Raising attack complexity:

- Scrambling of the flip-flop locations
- Varying timing between both AES cores

^aUsing State Space Encoding To Counter Biased Fault Attacks on AES Countermeasures, 2015

Conclusion

- We successfully show how two lasers can be used in an attack
- As example, broke duplication-based infective countermeasures
- Results principally affect most hardware duplication-based countermeasures!

Thank your for your attention **Questions?**

Contact Information

Dipl.-Ing. Bodo Selmke

Department Hardware Security (HWS)

Fraunhofer-Institute for Applied and Integrated Security (AISEC)

Address: Parkring 4 85748 Garching (near Munich) Germany Internet: http://www.aisec.fraunhofer.de

 Phone:
 +49 89 3229986-132

 Fax:
 +49 89 3229986-222

 E-Mail:
 bodo.selmke@aisec.fraunhofer.de

2xLFI on AES | Bodo Selmke | 08/16/2016 | 22

2xLFI on AES | Bodo Selmke | 08/16/2016 | 25

Pulse energy 1.0 nJ

