LATTICE-BASED SIGNATURE SCHEMES AND THEIR SENSITIVITY TO FAULT ATTACKS

FDTC 2016 08/16/2016 Nina Bindel
Johannes Buchmann
Juliane Krämer
TU Darmstadt

SHOR'S ALGORITHM 1994

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer*

Peter W. Shor[†]

an increase in computation true when quantum mech

factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.

Keywords: algorithmic number theory, prime factorization, discrete logarithms, Church's thesis, quantum computers, foundations of quantum mechanics, spin systems, Fourier transforms

AMS subject classifications: 81P10, 11Y05, 68Q10, 03D10

QUANTUM COMPUTER REALISTIC?

- John Martinis (UCSB & Google Quantum Labs): until 2019 universal quantum computer
- Prediction by EU-commision:
 until 2035 universal quantum computer

BETTER SAFE THAN SORRY

- NSA, 2015: announcement about transition from classical to quantum-resistant crypto
- NIST, 2016: announcement to start standardization competition

POST-QUANTUM CANDIDATES

Quantum key distribution

- Multivariate Crypto
- Code-based Crypto
- Hash-based Crypto
- Lattice-based Crypto

Side-channel analysis

Fault analysis

CONTRIBUTION

- Analysis of LBSS: BLISS, GLP, ring-TESLA
- 1st order attacks
- Randomization, skipping, zeroing
- all-in-all 15 different attacks
- to 9 at least one scheme vulnerable
- Propose countermeasures

VULNERABILITIES OF LBSS

Fault Attack	Changed Value or Op.	Algorithm	GLP	BLISS	ring-TESLA
Randomization	Secret	Sign	•		0
Skipping	Addition	Key Gen			
	Addition	Sign		0	\circ
	Correctness check	Verify			
	Size check	Verify			\circ
Zeroing	Secret	Key Gen	•	-	0
	Randomness	Sign			
	Hash polynomial	Sign			

NOTATION

- $R_q = \mathbb{Z}_q[x]/(x^n + 1)$, i.e., polys of degree n-1 with coefficients in $\left[-\frac{q}{2}, \frac{q}{2}\right]$
- Security assumption: Learning with errors (R-LWE)

Short integer solution (R-SIS)

LATTICE-BASED HARDNESS ASSUMPTION

R-LWE

 $a \cdot s + e = b \mod q$

$$a \stackrel{\$}{\longleftarrow} R_q$$

 s_i , $e_i \leftarrow D_\sigma$ or "small"

Secret key Public key

IDEA RANDOMIZATION ATTACK

Based on Bao et al. [BDHJNN96]

Change coefficient of original secret

Software computation:

Find index and value of faulted secret

DESCRIPTION KEY GENERATION OF GLP SCHEME

Key Generation

Input: 1^{κ}

Output: pk, sk

```
1. s, e \leftarrow poly with coeffs \in \{-1,0,1\}
```

2.
$$a \leftarrow \mathbb{Z}_q[x]/(x^n + 1)$$

3.
$$b \leftarrow as + e \mod q$$

4.
$$sk = s, pk = (a, b)$$

5. Return (pk, sk)

DESCRIPTION OF GLP SCHEME

Signature Generation

Input:
$$sk = (s, e), \mu$$

Output:
$$\sigma = (z_1, z_2, c)$$

1. $y_1, y_2 \leftarrow \$$

2.
$$c \leftarrow H(ay_1 + y_2, \mu)$$

3.
$$z_1 \leftarrow y_1 + sc$$

4.
$$z_2 \leftarrow y_2 + ec$$

5. Return (z_1, z_2, c) with some probability

Verification

Input: σ , μ , pk = (a, b)

Output: {0,1}

1. Check size of z_1 , z_2

2. Check $c = H(az_1 + z_2 - bc, \mu)$

3. If both checks okay: accept

4. Otherwise: reject

STRUCTURE ATTACK

Assumption 1

1st Insert fault: change one coeff. $s_i \in \{-1,0,1\}$ to

 $s_i' \in \{-1,0,1\}$

Assumption 2: coeffs. saved in 2 bit

2nd Software computation: find index i and determine value of s_i

- **1st** find $s_i s_i'$ at index i
- 2nd compute s_i

FAULTED SIGNATURE

Signature Generation

Input:
$$sk = (s, e), \mu$$

Output:
$$\sigma = (\mathbf{z_1}, \mathbf{z_2}, \mathbf{c})$$

1.
$$y_1, y_2 \leftarrow \$$$

2.
$$c \leftarrow H(ay_1 + y_2, \mu)$$

3.
$$\mathbf{z_1} \leftarrow \mathbf{y_1} + \mathbf{s'c}$$

4.
$$z_2 \leftarrow y_2 + ec$$

5. Return (z_1, z_2, c) with some probability

During verification check $c = H(az_1 + z_2 - bc, \mu)$

Instead check
$$c = H(az_1 + z_2 - bc - a\alpha x^i c, \mu)$$
 for values $\alpha \in \{-2, -1, 0, 1, 2\}$ and $i \in \{0, ..., n-1\}$

FINDING INDEX AND VALUE

For which values $\alpha \in \{-2, -1, 0, 1, 2\}$ and $i \in \{0, ..., n-1\}$ does the equation ...

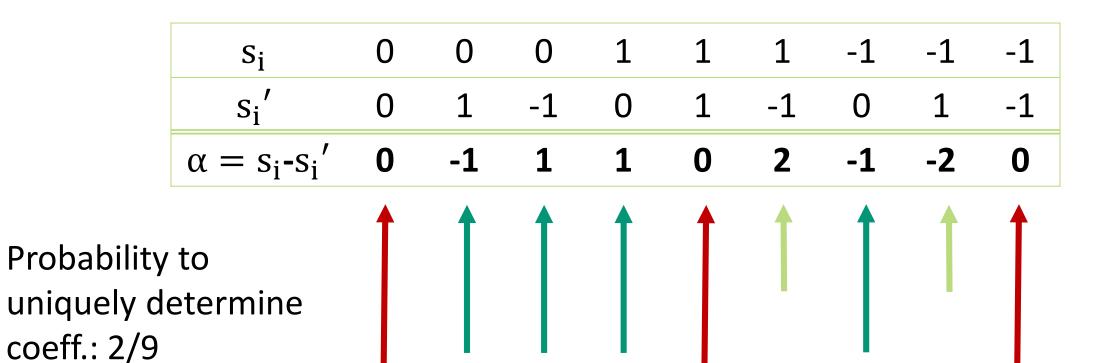
$$c = H(az_1 + z_2 - bc - a\alpha x^i c, \mu)$$

$$= H(a(y_1 + s'c) + y_2 + ec - (as + e)c - a\alpha x^i c, \mu)$$

$$= H(ay_1 + y_2 + a(s'-s - \alpha x^i)c, \mu)$$

... hold?

DETERMINATION OF COEFFICIENT



NUMBER OF NEEDED FAULTS

Number of secret coefficients: n = 512

→ plain expected number of faults: $\frac{9}{2} \cdot 512 \approx 2304$

Reduce number of faults:

Hybrid approach of fault attacks and mathematical crypanalysis of LWE

Enough to determine 118 of the secret coefficients

 \rightarrow expected number of faults: $\frac{9}{2} \cdot 118 \approx 531$

HYBRID APPROACH

- LWE gets easier when part of the secret known
- Software Computation time: 1 day
- Lattice cryptanalysis [LP10]: 118 coefficients necessary
- → Coefficients by fault attacks: 118
- → Coefficients by lattice-based cryptanalysis: 396

GENERALIZATIONS

- change more than one coefficient per fault
 - decreases number of expected faults
 - increases run time to find coefficients

- apply similar approach to BLISS
 - coeffs chosen in small interval
- not feasible for ring-TESLA
 - coeffs chosen Gaussian distributed

→ One countermeasure: use LWE with Gaussian distribution

COUNTERMEASURE

- 1. $y_1, y_2 \leftarrow \$$
- 2. $c \leftarrow H(ay_1 + y_2, \mu)$
- 3. $b' = as' + e \mod q$
- 4. $z_1 \leftarrow a^{-1}(b b')c + s'c + y_1$
- 5. $z_2 \leftarrow y_2 + ec$
- 6. Return (z_1, z_2, c)

Disadvantage:

- Additional computation: a^{-1} , b'
- Additional input: b

$$z_1 = a^{-1}(b - b')c + s'c + y_1$$

$$= a^{-1}(as + e - as' - e) + s'c + y_1$$

$$= a^{-1}a(s - s')c + s'c + y_1$$

$$= sc + y_1$$

FUTURE WORK

- implement and run attack in praxis
- implement countermeasures and evaluate their effectiveness

