
Fault Tolerant Implementations of Delay-based
Physically Unclonable Functions on FPGA

Presented by:
Sarani Bhattacharya
SEAL, IIT Kharagpur

Authors: Durga Prasad Sahoo, Sikhar Patranabis, Debdeep
Mukhopadhyay, and Rajat Subhra Chakraborty

Secured Embedded Architecture Laboratory (SEAL)
Indian Institute of Technology Kharagpur, India

Fault Diagnosis and Tolerance in Cryptography, 2016



Objective of Talk

I Overview of laser fault attacks on FPGA-based Physically
Unclonable Functions (PUFs) implementations (Tajik et al.
in FDTC-2015) and its consequences:

I Accelerate the modeling attack
I Entropy reduction

I Our Contributions:
I Inclusion of additional logic to make the faults detectable —

Fault Detection
I Recovery of PUF instance from the faulty state — Fault

Recovery
I As case studies, APUF, XOR APUF and ROPUF will be

discussed



Outline

1 Overview: Laser Fault Attack on SRAM FPGA and PUF

2 Laser Fault on XOR APUF and Its Detection

3 Laser Fault on ROPUF and Its Detection

4 Fault Recovery Schemes



Overview: Laser Fault Attack on SRAM FPGA and PUF

1 Overview: Laser Fault Attack on SRAM FPGA and PUF

2 Laser Fault on XOR APUF and Its Detection

3 Laser Fault on ROPUF and Its Detection

4 Fault Recovery Schemes



Overview: Laser Fault Attack on SRAM FPGA and PUF

Logic Realization in SRAM FPGA

I Look-Up Tables (LUTs) in FPGA are used to implement any
Boolean function

I A k-LUT (k inputs LUT) is composed of 2k SRAM cells and 2:1
MUX tree. See Fig. (a)

0
1

0
1

0
0

1
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

I3I1I0

o

S
R
A
M
ce
lls

(a) Internal view
of 3-LUT

5-
L
U
T

5-
L
U
T

I0 I0
I1 I1
I2 I2
I3 I3
I4 I4

I4
I3
I2
I1
I0

O5

0

1

O6

I6

6-LUT

(b) 6-LUT in Xilinx

I Dual-output 6-LUT in Xilinx 7-series FPGA is shown in Fig. (b)



Overview: Laser Fault Attack on SRAM FPGA and PUF

Laser Fault-injection on SRAM FPGA

I Objective is to modify the content of SRAM cells associated with
an LUT

I It results the LUT with modified functionality — called as fault

Figure: Laser fault-injection setup [Tajik el al., FDTC-2015]

I Laser Pulse can be used to read and modify the content of SRAM
cells in FPGA

I Photonic emission analysis through IC back-side is used to
identify the target components



Overview: Laser Fault Attack on SRAM FPGA and PUF

Traditional Fault Tolerance Approaches— not
applicable in PUF

I A silicon Physically Unclonable Function (PUF) is a mapping

γ : {0, 1}n −→ {0, 1}k

where the k-bit output, known as response, are unambiguously
identified by both the n-bit input, known as challenge, and the
unclonable, unpredictable but repeatable instance specific
manufacturing variations.

I Two important properties of PUF:
I Randomness: PUF outputs are random, and thus, there are no

such reference outputs to detect faults
I Uniqueness: Instances of a PUF design are expected to be unique

I Traditional fault tolerance approach not applicable:
I Spatial redundancy (infeasible due uniqueness property)
I In context of PUF, design-specific fault tolerance scheme is

required. Next we discuss a few such schemes.



Overview: Laser Fault Attack on SRAM FPGA and PUF

Traditional Fault Tolerance Approaches— not
applicable in PUF

I A silicon Physically Unclonable Function (PUF) is a mapping

γ : {0, 1}n −→ {0, 1}k

where the k-bit output, known as response, are unambiguously
identified by both the n-bit input, known as challenge, and the
unclonable, unpredictable but repeatable instance specific
manufacturing variations.

I Two important properties of PUF:
I Randomness: PUF outputs are random, and thus, there are no

such reference outputs to detect faults
I Uniqueness: Instances of a PUF design are expected to be unique

I Traditional fault tolerance approach not applicable:
I Spatial redundancy (infeasible due uniqueness property)
I In context of PUF, design-specific fault tolerance scheme is

required. Next we discuss a few such schemes.



Overview: Laser Fault Attack on SRAM FPGA and PUF

Traditional Fault Tolerance Approaches— not
applicable in PUF

I A silicon Physically Unclonable Function (PUF) is a mapping

γ : {0, 1}n −→ {0, 1}k

where the k-bit output, known as response, are unambiguously
identified by both the n-bit input, known as challenge, and the
unclonable, unpredictable but repeatable instance specific
manufacturing variations.

I Two important properties of PUF:
I Randomness: PUF outputs are random, and thus, there are no

such reference outputs to detect faults
I Uniqueness: Instances of a PUF design are expected to be unique

I Traditional fault tolerance approach not applicable:
I Spatial redundancy (infeasible due uniqueness property)
I In context of PUF, design-specific fault tolerance scheme is

required. Next we discuss a few such schemes.



Laser Fault on XOR APUF and Its Detection

1 Overview: Laser Fault Attack on SRAM FPGA and PUF

2 Laser Fault on XOR APUF and Its Detection

3 Laser Fault on ROPUF and Its Detection

4 Fault Recovery Schemes



Laser Fault on XOR APUF and Its Detection Basics of XOR APUF

Arbiter PUF (APUF)1 2

S0

yt0

yb0

c[0]

S1

yt1

yb1

c[1]

Sn−2

ytn−2

ybn−2

c[n-2]

Sn−1

ytn−1

ybn−1

c[n-1]

CLK

D
rtig

Switch

(a) APU architecture

0
1

yt

1
0

yb

c[i]

pi

qi

ri
si

xt

xb

(b) Classic SW

0
1

yt

0
1

yb

c[i]

pi

si

qi
ri

xt

xb

(c) PDL SW

Figure: Arbiter PUF architecture with two types of switches

I A given challenge c ∈ {0, 1}n forms a pair of (ideally)
symmetrically laid-out paths (zero nominal delay difference)

I Applied ‘tig’ signal propagates along these paths
I The response to c is determined by the unique and random delay

difference ∆c of path-pair
1

D. Lim, “Extracting Secret Keys from Integrated Circuits,” Master’s thesis, MIT, USA, 2004
2

M. Majzoobi, F. Koushanfar, and S. Devadas, “FPGA PUF using Programmable Delay Lines,” in IEEE International
Workshop on Information Forensics and Security (WIFS), Dec 2010, pp. 1–6



Laser Fault on XOR APUF and Its Detection Basics of XOR APUF

XOR PUF and Its Modeling

I Output o of x-XOR APUF is:

o = r0 ⊕ r1 ⊕ · · · ⊕ rx−1

I Security assumption: outputs
r0, . . . , rx−1 of APUFs are not
accessible to the attacker

A0

A1

Ax−1

c

r0

r1

rx−1

o

Figure: x-XOR APUF

I In LR-based modeling, no. of parameters to be learned is x(n+ 1)
for x-XOR APUF with n-bit challenge

I If x ≥ 6, LR-based modeling is computationally infeasible. This
bound is based on the serial implementation1 of LR

1
J. Sölter, “Cryptanalysis of Electrical PUFs via Machine Learning Algorithms,” Master’s thesis, Technische Universität

München, 2009



Laser Fault on XOR APUF and Its Detection Fault Attacks

Fault-assisted Modeling of XOR APUF1

Summary of fault-assisted modeling attack published in FDTC-2015:

I Adversary’s Objective:
I Modeling of x-XOR APUF is performed using the models of

individual APUF
I Achieving modeling of x-XOR APUF with linear time and data

complexities
I Adversary’s Task:

I Get access to APUFs’ outputs through XOR gate output
I Laser based fault-injection can modify a XOR APUF circuit such

that it behaves like ith APUF (i = 0, . . . , k − 1) for a time interval
I This makes the modeling of individual APUF feasible

1
S. Tajik, H. Lohrke, F. Ganji, J. P. Seifert, and C. Boit, “Laser Fault Attack on Physically Unclonable Functions,” in 12th

Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), 2015



Laser Fault on XOR APUF and Its Detection Fault Attacks

Fault-assisted Modeling of XOR APUF (contd.)

I Target components and fault-injection approach:
I Attack-I: APUF Switching Stage

I Modify the LUTs of last switch Sn−1 APUF such that D inputs of D-FF
(arbiter logic) is always ‘0’

I Perform this modification for all x− 1 APUFs except the target APUF
I Thus, XOR APUF output is the same as the output of fault-free APUF
I Restart the circuit and repeat this for other APUFs

A0
tig
c r

A1
tig tig

c r

A2
tig

c c r

o

X1

(a) 3-XOR APUF

A0
tig
c r

A1
tig tig

c r

A2
tig

c c r

o

X1
0

0

(b) 3-XOR APUF with faulty
APUFs



Laser Fault on XOR APUF and Its Detection Fault Attacks

Fault-assisted Modeling of XOR APUF (contd.)

I Target components and fault-injection approach:
I Attack-II: XOR Logic in XOR APUF

I Modify the XOR logic such that it behaves like a buffer circuit for only
one of its inputs

I Output of XOR APUF is now the same as one of its APUFs
I Repeat above steps for all x APUF instances to collect their CRPs

A0
tig
c r

A1
tig tig

c r

A2
tig

c c r

o

X1

(c) 3-XOR APUF withb faulty XOR

o

X1
r0
r1
r2

ri o

(d) Faulty XOR works as buffer
for i-th input



Laser Fault on XOR APUF and Its Detection Fault Detection

Fault Detection in APUF

S0

yt0

yb0

c[0]

S1

yt1

yb1

c[1]

Sn−2

ytn−2

ybn−2

c[n-2]

Sn−1

ytn−1

ybn−1

c[n-1]

CLK

D
rtig

Switch

APUF
tig

c

T
r

FDL
tig

T

Figure: APUF with fault detection logic (FDL)

Table: 3-input FDL

Inputs Output
tig ytn−1 ybn−1 T
0 0 0 1
1 1 1 1
x 0 1 0
x 1 0 0

I If ‘tig’ is either 0 or 1, that value should be propagated to ‘D’ and
‘CLK’ inputs of D-FF in fault-free APUF

I Modification in switch Sn−1 due to laser fault-injection results in
‘D=0’ regardless of ‘tig’ signal value

I Fault detection logic (FDL) can detect this fault
I The output of each individual APUF circuit is correct iff T=1
I Thus, one should sample APUF response when T=1



Laser Fault on XOR APUF and Its Detection Fault Detection

Fault Detection in XOR APUF

A0
tig
c r

A1
tig tig

c r

A2
tig

c c r

o

X1

(a) 3-XOR APUF

A0
tig
c

T
r

A1
tig tig

c
T
r

A2
tig

c c
T
r

1

0 0
o

Z

F1

X1

M1

(b) Countermeasure- Attack-I

A0
tig
c

T
r

1A1
tig tig

c
T
r 2

A2
tig

c c
T
r

3
0

0 1
1

3

1
2

0 0 o

Y2 F1

X1

X2

F2

M1

M2

F3
Y1

Z

Y2

(c) Countermeasure- Attack-I & II

Figure: 3-XOR APUF with fault detection option.

I XOR APUF output is correct if Z=1
I Sampling of XOR PUF response should be done when Z=1



Laser Fault on XOR APUF and Its Detection Fault Detection

Note

I Unlike PUF instances, fault detection logic (FDL) circuits are
deterministic

I FDL circuits can be replicated to make them more robust against
laser-faults

I PUF instances cannot be replicated due to its unique and
instance-specific behavior



Laser Fault on ROPUF and Its Detection

1 Overview: Laser Fault Attack on SRAM FPGA and PUF

2 Laser Fault on XOR APUF and Its Detection

3 Laser Fault on ROPUF and Its Detection

4 Fault Recovery Schemes



Laser Fault on ROPUF and Its Detection

ROPUF and Fault Attack

0

1

2n − 2

2n − 1

2n
:2

M
U
X

en
Counter-1

Counter-2

> r

c
Challenge

Response

Figure: Ring Oscillator PUF

I ROPUF exploits a pair of ROs to generate a response bit
I Attacker might attempt to modify a RO of a pair of ROs to a

non-oscillating loop
I Output corresponding to the RO pair would be biased
I It results a ROPUF with reduced entropy



Laser Fault on ROPUF and Its Detection

Laser Fault-injection on RO
inv1 inv2 inv3 inv4 inv5

en out

(a) RO

inv1 inv2 inv3 inv4 non-inv
en out

(b) Faulty RO

1
0

0
1

y

x

1-LUT

inv

x y

(c) Inverter using
1-LUT

0
1

0
1

y

x

1-LUT

buf

x y

(d) Buffer using 1-LUT

I Each stage of RO can be realized using a 1-LUT
I LUT content of each stage is identical
I Attacker can modify the LUT content such that one inverting stage

of RO becomes non-inverting
I Modified RO does not oscillate as there are even number of

inverting stages



Laser Fault on ROPUF and Its Detection

Fault Detection in RO

I RO with fault detection logic:

inv1 inv2 inv3 inv4 inv5
en out

=
F1

=

F2

T
F3

I2

I1

Figure: RO Design-I

I In each period of oscillation, odd stages produce the same output
if there are no modifications in the odd stages. Likewise, it also
happens for even stages.

I We incorporate two equality checking logic F1 and F2
I Inverters I1 is used to decide what are the expected outputs of

odd stages of RO. I2 is used for even stages
I ‘T=1’ implies both F1 and F2 output 1s, and RO is fault-free for

that oscillation period



Laser Fault on ROPUF and Its Detection

Fault Detection in RO (contd.)

inv1 inv2 inv3 inv4 inv5
en out

=
F1

=

F2

T
F3

I2

I1

(a) RO Design-I

inv1 inv2 inv3 inv4 inv5

en out

=
F1

=

F2

T
F3

M1

0
1 1

x

I2

I1

(b) RO Design-II

Figure: RO with two different fault detection circuits.

I In RO Design-I, signal T becomes ‘1’ at the end of each oscillation
period for fault-free RO

I Thus, we can monitor this signal to detect the occurrence of fault,
but this scheme is expensive as RO oscillates in MHz frequency

I Instead, we can check the RO before and after its frequency
evaluation only to detect any faulty behavior

I Assuming that the adversary cannot revert the fault before the
evaluation is finished

I This can be achieved by RO Design-II with an additional MUX
(M1) with control signal ’x‘



Laser Fault on ROPUF and Its Detection

Fault Detection in RO (contd.)

inv1 inv2 inv3 inv4 inv5

en out

=
F1

=

F2

T
F3

M1

0
1 1

x

I2

I1

Figure: RO Design-II

I If ‘x=0’ and ‘en=0’, then input of inverter ‘inv1’ is set to ‘0’, whereas
for ‘x=1’ and ‘en=0/1’, input of ‘inv1’ is fixed to ‘1’

I These two assignments for signals ‘en’ and ‘x’ are required for
fault detection

I For normal operation of RO required assignment is: ‘x=0’ and
‘en=1’

I A ROPUF design would be robust if it employs the RO with the
proposed fault detection logic

I A faulty RO can be recovered to its fault-free state using fault
recovery schemes that will be discussed next



Fault Recovery Schemes

1 Overview: Laser Fault Attack on SRAM FPGA and PUF

2 Laser Fault on XOR APUF and Its Detection

3 Laser Fault on ROPUF and Its Detection

4 Fault Recovery Schemes



Fault Recovery Schemes

Fault Recovery Schemes for FPGA

I Broadly, two fault-recovery options are:
1 Rollback

I Objective here is to revert back to the original PUF instance with
exactly the same timing behavior

I This can be achieved using either configurable LUT (CFGLUT5) or
dynamic partial reconfiguration (DPR)

I Configurable LUT based recovery solution (only 32 clocks) is much
faster than DPR

2 Random-sliding
I Objective in this case is to replace the faulty PUF instance with a

different PUF instance with different timing behavior, without extra
LUTs

I In case of authentication, verifier needs to maintain CRPs of all
possible instances of PUF used to achieve fault tolerant feature



Fault Recovery Schemes

Example of Random-sliding

0
1

0
1

0
1

0
1

0
1

o

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
10

1
0
1

0
1

0
1

0
1

0
1

0
1

i3i2i1i0SRAM

Cells

(a) i2=0, i3=0

0
1

0
1

0
1

0
1

0
1

o

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
10

1
0
1

0
1

0
1

0
1

0
1

0
1

i3i2i1i0SRAM

Cells

(b) i2=1, i3=0

0
1

0
1

0
1

0
1

0
1

o

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
10

1
0
1

0
1

0
1

0
1

0
1

0
1

i3i2i1i0SRAM

Cells

(c) i2=0, i3=1

0
1

0
1

0
1

0
1

0
1

o

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
10

1
0
1

0
1

0
1

0
1

0
1

0
1

i3i2i1i0SRAM

Cells

(d) i2= 1, i3=1

Figure: A 2-variable Boolean function f (i0,i1) is implemented using 4-LUT.
The circuit corresponding to f (i0,i1) shows four different timing behaviors for
four different assignments for i2i3 ∈ {00, 10, 01, 11}.



Fault Recovery Schemes

Random-sliding for PUF Components

I Random-sliding feature can be used for APUF-based
authentication:

I An APUF switch utilizes a small portion of a LUT; thus, rest of the
LUT part can be used to incorporate random-sliding feature in
APUF switch

I If the present configuration of APUF switch is found faulty, we can
try with another random-slid configuration

I This features can also be used for other PUF designs
I Random-sliding is the fastest recovery scheme when it is

applicable



Conclusion

Conclusion

I Laser fault based modeling attack and entropy reduction attack
can be a serious threat, although there are many physical
constraints like IC depackaging

I Bare implementation of PUF is not enough to prevent physical
attacks like laser fault attack

I Fault detection and recovery features should be included, and it
should be a part of any future PUF design



End of Presentation

Thank You


	Overview: Laser Fault Attack on SRAM FPGA and PUF
	Laser Fault on XOR APUF and Its Detection
	Laser Fault on ROPUF and Its Detection
	Fault Recovery Schemes

