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Investigating a novel approach
towards a hardware implementation
resisting combined SCA and FAs
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Private Circuits Il provides resistance
against combined SCA and FA
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Which approach is more efficient in HW ?
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PC and Tl are both
boolean masking schemes

Input Encoding

l1 = Input + R+ + Ro
l> = R;
I3 = Ro

Output Decoding

Masked

, , O1 + O2 + O3 = Qutput
Circuit 1 =TS P

Linear operations are performed on individual shares
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Implementing PRESENT S-box with
Threshold Implementations

<1 o Y3 e—> < 51

—~T @—A» Y2 o @% S5
4 ><: 4 1 4

A1 o—Pp Y1 é < 573

(Poschmann, 2011)
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Threshold Implementations is less
costly in all aspects

PC-l | TI
Number of Slices 107 | 29
Number of Slice Flip Flops | 166 | 48
Number of 4 input LUTs 9 57
Consumed Random Bits 28 0
Number of Clock Cycles 4 2
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For SCA resistance only the data
dependent values need to be masked

plaintext key regist
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clk | |
decoded_inp[63:0] FFFFFFFFFFFFFFEF

decoded_key[79:0] 00000000000000000000
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start
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Fault on ready signal reveals all intermediate results
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PC |l effectively handles the injected
fault on the ready signal

clk |

decoded inp(63:0] FFFFFFFFFFFFFFEF

decoded_key [79:0] 00000000000000000000

decoded_out [63:0] 0000000000000000

start[1:0] 00 Y11

ready[1:0] 01

Fault on ready signal reveals no information
on the intermediate results
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Tl Tl + PC-II Tl + PC-II
Reset-Only | Genera Attack

(t=1)
Number of Slices 096 6125 6125
Number of Slice Flip Flops | 647 1292 1292
Number of 4 input LUTs 1356 10341 10341
Consumed Random Bits 0
Number of Clock Cycles 578

Result of use of LUTs

4 input function

vs atomic gates

Can be reduced when care is applied
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Applying PC Il results in a significant
Increase In area

Future work can improve the area cost
for our FPGA implementations

1. Packing gates in LUT while satisfying the
OR of AND structure

2. Move implementations to larger FPGAs
and launch combined attacks

3. Circuits with randomness consumption
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Thank you

Questions ?
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Error Cascading Stage is nonlinear
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Non-completeness is broken !

S1,ec,1 = (S1,1751,0752,152,0) @ (S1,1751,052,1752,0)
S1,ec,0 = (61,151,0752,152,0) @ (—51,151,052,1752,0)
S2,ec,1 = (61,151,052,1752,0) @ (S1,1751,052,1752,0)
S2,ec,0 = (61,151,0752,152,0) @ (S1,1751,0752,152,0)
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