More Efficient Private Circuits |l
Through Threshold Implementations

Thomas De Cnudde
Svetla Nikova

08/16 — FDTC 2016 — Santa Barbara

Investigating a novel approach
towards a hardware implementation
resisting combined SCA and FAs

Countermeasures for SCA and FA
are generally researched separately

SCA Countermeasures Il

| FA Countermeasures

Countermeasures for SCA and FA
are generally researched separately

SCA Countermeasures Il

| FA Countermeasures

Masking

Countermeasures for SCA and FA
are generally researched separately

SCA Countermeasures Il

| FA Countermeasures

Masking

Hiding

Countermeasures for SCA and FA
are generally researched separately

SCA Countermeasures Il

| FA Countermeasures

Masking

Private Circuits

Hiding

Countermeasures for SCA and FA
are generally researched separately

SCA Countermeasures ili' FA Countermeasures
Masking
Private Circuits
Threshold

Implementations

Hiding

Countermeasures for SCA and FA
are generally researched separately

SCA Countermeasures ili' FA Countermeasures
Masking
Private Circuits
Threshold

Implementations

Hiding

Countermeasures for SCA and FA
are generally researched separately

SCA Countermeasures ili' FA Countermeasures
Masking Temporal or Spatial
Private Circuits redundancy
Threshold

Implementations

Hiding

Countermeasures for SCA and FA
are generally researched separately

SCA Countermeasures Il

| FA Countermeasures

Masking Temporal or Spatial
Private Circuits redundancy
Threshold

Error correction/

Implementations _
detection

Hiding

Countermeasures for SCA and FA
are generally researched separately

SCA Countermeasures Il

| FA Countermeasures

Masking Temporal or Spatial
Private Circuits redundancy
Threshold

Error correction/
detection

Infective computing

Implementations

Hiding

Countermeasures for SCA and FA
are generally researched separately

SCA Countermeasures Il

| FA Countermeasures

Masking Temporal or Spatial
Private Circuits redundancy
Threshold

Error correction/
detection

Infective computing

Implementations
Hiding

Sensors

Private Circuits Il provides resistance
against combined SCA and FA

SCA Countermeasures Ilil FA Countermeasures

Masking ! Temporal or Spatial
Private Circuits redundancy
Threshold

Error correction/
detection

Infective computing

Implementations
Hiding

Sensors

Applying Private Circuits |l requires a
series of transformation

PRESENT

Applying Private Circuits |l requires a
series of transformation

PRESENT

$

obtaining SCA
resistance

Private Circuits

Applying Private Circuits |l requires a
series of transformation

PRESENT

$

obtaining SCA
resistance

Private Circuits

$

Private Circuits ||

obtaining combined
SCA and FA resistance

Private Circuits and Threshold
Implementations are closely related

| o Threshold
Private Circuits €= Implementations

Private Circuits and Threshold
Implementations are closely related

Threshold

Private Circuits <= .
Implementations

Glitches not allowed Glitches allowed

Combined SCA and FA resistance
for the PRESENT block cipher

PRESENT

" 4

Threshold

Private Circuits .
Implementations

)

Private Circuits ||

Combined SCA and FA resistance
for the PRESENT block cipher

PRESENT

)

Threshola
Implementations

" 4

Private Circuits ||

Private Circuits

Combined SCA and FA resistance
for the PRESENT block cipher

PRESENT

?

Private Circuits Threshold

Implementations

Which approach is more efficient in HW ?

PC and Tl are both
boolean masking schemes

Input Encoding

l1 = Input + R+ + Ro
l> = R;
I3 = Ro

PC and Tl are both
boolean masking schemes

Input Encoding

l1 = Input + R+ + Ro
l> = R;
I3 = Ro

Masked
Circuit

PC and Tl are both
boolean masking schemes

Input Encoding

l1 = Input + R+ + Ro
l> = R;
I3 = Ro

Output Decoding

Masked
Circuit

O1 + O2 + O3 = Output

PC and Tl are both
boolean masking schemes

Input Encoding

l1 = Input + R+ + Ro
l> = R;
I3 = Ro

Output Decoding

Masked

, , O1 + O2 + O3 = Qutput
Circuit 1 =TS P

Linear operations are performed on individual shares

PC and TI differ in the nonlinear

operations
Q —
1

PC and Tl differ in the nonlinear
operations

Private Circuits: a —
|) Generate R12 R13 R23 b —. C
2) Compute R2,1 = R12+a1b2

Rs1 = R13+aibs
3) Compute C1 = a1b1+R1,2+R1,3
C2 = a20b2+R2 1+az2b1+R23
C3 = asb2+R3 1+asb1+R2 1+a2b1

PC and Tl differ in the nonlinear
operations

Private Circuits: a —
|) Generate R12 R13 R23 b —. C
2) Compute R2,1 = R12+a1b2

Rs1 = R13+aibs
3) Compute C1 = a1b1+R1,2+R1,3
C2 = a20b2+R2 1+az2b1+R23
C3 = asb2+R3 1+asb1+R2 1+a2b1

a] — —
b2 R2,3
b1 —
R1,2 y) b1

— C1]
R1,3 D> j>

R1,2

al —

by —

PC and TI differ in the nonlinear

operations
Q —
1

PC and Tl differ in the nonlinear
operations

Threshold Implementations: —}C
b —

C1 = asb> + aibo + asb-
C> = asbs + asbs + asbs
C3z = aib1 + aibs + asbq

PC and TI differ in the nonlinear

operations

Threshold Implementations: —}C
b —

C1 = asb> + aibo + asb-
C> = asbs + asbs + asbs
C3z = aib1 + aibs + asbq

™ 2
/ by — J
N 3
/ by — /

Implementing PRESENT S-box with
Private Circuits

X 0 1 2 3 4 5 6 7 8 9 A B
S(x) C 5 6 B 9 0 A D 3 E F 8 4 7
” ™
+_> S // >
4 4

v

Implementing PRESENT S-box with
Private Circuits

X 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2
G(x) 7 E 9 2 B 0 4 D 5 C A 1 8 3 6 F
F (X) 0 8 B 7 A 3 1 C 4 6 F 9 E D 5 2

4 ™ 4 [\ [\ ™
—~<—»{ S = <1+ G —==»| F >
4 4 4 4 4
[U J I U U J

Implementing PRESENT S-box with
Private Circuits

X 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2
G(x) 7 E 9 2 B 0 4 D 5 C A 1 8 3 6 F
F (X) 0 8 B 7 A 3 1 C 4 6 F 9 E D 5 2

4 ™ 4 [\ [\ ™
—~<—»{ S = <1+ G —==»| F >
4 4 4 4 4
[U J I U U J

23 AND gadgets
23 XOR gadgets

Implementing PRESENT S-box with
Private Circuits

X 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2
G(x) 7 E 9 2 B 0 4 D 5 C A 1 8 3 6 F
F (x) 0 8 B 7 A 3 1 C 4 6 F 9 E D 5 2

—~—1p S - —~41 G > F <
4 4 4 4 4
23 AND gadgets 9 AND gadgets

23 XOR gadgets |9 XOR gadgets

Implementing PRESENT S-box with
Threshold Implementations

<1 o Y3 e—> < 51

—~T @—A» Y2 o @% S5
4 ><: 4 1 4

A1 o—Pp Y1 é < 573

(Poschmann, 2011)

PC and Tl achieve equivalent security
with 25 Million traces

PC 1t T
! Order °
3 o 3 o
5 ' ' ' 5
500 1000 1500 200 400 600 800

timesamples timesamples

PC and Tl achieve equivalent security
with 25 Million traces

tvaue

tvaue

5
0

-5
-10
-15

PC qst

Order
Q
=
z
500 1000 1500
timesanples
q)
- =
“ Vi :
500 1000 1500
_ 2nd
timesanples

Order

|3

Tl

200 400 600 800

Threshold Implementations is less
costly in all aspects

PC-l | TI
Number of Slices 107 | 29
Number of Slice Flip Flops | 166 | 48
Number of 4 input LUTs 9 57
Consumed Random Bits 28 0
Number of Clock Cycles 4 2

PRESENT-TI achieves its security
with 100 Million traces

5_

1 st

Order

0

t-value

-5

1000 2000 3000 4000 5000 6000 7000 8000 9000

timesamples

PRESENT-TI achieves its security
with 100 Million traces

1 st

Order

Combined SCA and FA resistance
for the PRESENT block cipher

PRESENT

?

Private Circuits

Threshold
Implementations

Private Circuits I

Combined SCA and FA resistance
for the PRESENT block cipher

PRESENT

?

Private Circuits

Threshold
Implementations

" 4

Private Circuits I

Combined SCA and FA resistance
for the PRESENT block cipher

PRESENT

Threshold

Implementations

" 4

Private Circuits I

Private Circuits

Private Circuits || comes in two
variants of FA resistance

1) Resisting any number of reset-only wire faults

2) Resisting t arbitrary wire faults

Private Circuits || comes in two
variants of FA resistance

1) Resisting any number of reset-only wire faults

2) Resisting t arbitrary wire faults t =1

Tamper resistance against any number of
reset-only wire faults

SCA Resistant Circuit

Tamper resistance against any number of
reset-only wire faults

SCA Resistant Circuit

¥

Manchester Encoding

0=(0,1)
| = (1,0)

Tamper resistance against any number of
reset-only wire faults

SCA Resistant Circuit

| |

¥

Manchester Encoding

01 01 |01

0=(0.) 2 o o
| = (1.0) . 10 1o |10
Gadgets Encoding and Error
Cascading

propagates invalid 00

Tamper resistance against any number of
reset-only wire faults

SCA Resistant Circuit

| |

¥

Manchester Encoding

01 01 |01

0=(0.) 2 o o
| = (1.0) ' 10 1o |10
Gadgets Encoding and Error
Cascading

]EC[]ECE
propagates invalid 00 . gEc[I I]ECJ | .

Tecl

Tamper resistance against any number of
reset-only wire faults

SCA Resistant Circuit

| |

¥

Manchester Encoding

01 01 |01

0=(0.) 2 o o
| = (1.0) ' 10 1o |10
Gadgets Encoding and Error
Cascading

]EC[]ECE
propagates invalid 00 . gEc[I I]ECJ | .
: I]EC ECE :
' j Tecl L

Output Decoding ©.1n=0
(1,0) = |

|18

Tamper resistance against
one arbitrary wire faults

SCA Resistant Circuit

Tamper resistance against
one arbitrary wire faults

SCA Resistant Circuit

¥

Repetition Encoding

0 = (0,0)
| = (1,1)

Tamper resistance against
one arbitrary wire faults

SCA Resistant Circuit

¥

Repetition Encoding

0 = (0,0)
= (1,1) '

Gadgets Encoding and Error
Cascading

propagates invalid Ol

Tamper resistance against
one arbitrary wire faults

SCA Resistant Circuit

¥

Repetition Encoding

0 = (0,0)
= (1,1) '

Gadgets Encoding and Error OR of ANDs form

Cascading =

propagates invalid Ol

Tamper resistance against
one arbitrary wire faults

SCA Resistant Circuit

¥

Repetition Encoding

0 = (0,0)
= (1,1) '

Gadgets Encoding and Error OR of ANDs form

Cascading =

NOT gate is reversible

fault at output propagates to the input

propagates invalid Ol

Tamper resistance against
one arbitrary wire faults

SCA Resistant Circuit

¥

Repetition Encoding

0 = (0,0)
= (1,1) '

Gadgets Encoding and Error OR of ANDs form

Cascading =

NOT gate is reversible

fault at output propagates to the input

propagates invalid Ol

¥

Output Decoding (©0)=0
(1,1) = | "

For SCA resistance only the data
dependent values need to be masked

plaintext key regist
é‘ addRoundKey $:
generateRoundKeys() : :;[m‘;fjm.l ‘ -
. . g update
fOl‘ I — l 1O -{l dO plave: 2
addRoundKey(STATE, K) ' '
sBoxLayer(STATE) : :
pLayer(STATE) ’ ' ‘ 1
end for asoiacizas i ‘ update ‘
. PRALE G - \ wlL.aver
addRoundKev(STATE. K 32) e) |
é‘ addRoundKey J
1
[)}.t ext

20

With FA, control signals can be the
target of Fault Injection

out Share 1

Key;[79:16]

Fault on ready signal can reveal all intermediate results

21

With FA, control signals can be the
target of Fault Injection

clk | |
decoded_inp[63:0] FFFFFFFFFFFFFFEF

decoded_key[79:0] 00000000000000000000

decoded_out [63:0] FFFFFFFFFFFFFFEF \FFFFFFFFFFFFFRE)

start
ready ,

Fault on ready signal reveals all intermediate results

22

All possible signals need to be
encoded with PC Il

/ Serial Counter \

17

‘ e ~ Permute
1 —$—|
o Rotate Key

16 Sbox Key

'D"_D——»S—box Data
>

_ /

/ Round Counter \

2
SEy .
\ /—» Round Constant

23

All possible signals need to be
encoded with PC Il

/ Serial Counter
7

~

‘
1 —$—|
-0

~ Pamute
Rotate Key

16

N\

" Shox Key

KDJ—»S—box Data

/ Round Counter \

> Ready

I3

/—» Round Constant

23

Adders

All possible signals need to be
encoded with PC Il

/ Serial Counter
7

~

‘
1 —$—|
-0

~ Pamute
Rotate Key

16

N\

" Shox Key

KDJ—»S—box Data

/ Round Counter \

> Ready

I3

/—» Round Constant

23

Adders

Comparators

All possible signals need to be
encoded with PC Il

/ Serial Counter
1

~

- Permute

ll:‘-e
1
_@

Rotate Key

16

N\

" Shox Key

KDJ—»S—box Data

/ Round Counter \

> Ready

I3

/—» Round Constant

23

Adders
Comparators

Multiplexers

PC |l effectively handles the injected
fault on the ready signal

clk |

decoded inp(63:0] FFFFFFFFFFFFFFEF

decoded_key [79:0] 00000000000000000000

decoded_out [63:0] 0000000000000000

start[1:0] 00 Y11

ready[1:0] 01

Fault on ready signal reveals no information
on the intermediate results

24

Applying PC Il results in a significant
Increase In area

Tl Tl + PC-II Tl + PC-II
Reset-Only | Genera Attack

(t=1)
Number of Slices 096 6125 6125
Number of Slice Flip Flops | 647 1292 1292
Number of 4 input LUTs 1356 10341 10341
Consumed Random Bits 0
Number of Clock Cycles 578

25

Applying PC Il results in a significant
Increase In area

Tl Tl + PC-II Tl + PC-II
Reset-Only | Genera Attack

(t=1)
Number of Slices 096 6125 6125
Number of Slice Flip Flops | 647 1292 1292
Number of 4 input LUTs 1356 10341 10341
Consumed Random Bits 0
Number of Clock Cycles 578

Result of use of LUTs 4 input function
vs atomic gates

25

Applying PC Il results in a significant

Increase In area

Tl Tl + PC-II Tl + PC-II
Reset-Only | Genera Attack

(t=1)
Number of Slices 096 6125 6125
Number of Slice Flip Flops | 647 1292 1292
Number of 4 input LUTs 1356 10341 10341
Consumed Random Bits 0
Number of Clock Cycles 578

Result of use of LUTs

4 input function

vs atomic gates

Can be reduced when care is applied

25

Applying PC Il results in a significant
Increase In area

Future work can improve the area cost
for our FPGA implementations

1. Packing gates in LUT while satisfying the
OR of AND structure

26

Applying PC Il results in a significant
Increase In area

Future work can improve the area cost
for our FPGA implementations

1. Packing gates in LUT while satisfying the
OR of AND structure

2. Move implementations to larger FPGAs
and launch combined attacks

26

Applying PC Il results in a significant
Increase In area

Future work can improve the area cost
for our FPGA implementations

1. Packing gates in LUT while satisfying the
OR of AND structure

2. Move implementations to larger FPGAs
and launch combined attacks

3. Circuits with randomness consumption

26

Thank you

Questions ?

08/16 — FDTC 2016 — Santa Barbara

Error Cascading Stage is nonlinear

S|
52

Jecl Jecl

deh A=k
Jecl Jecl

Tecl

28

Error Cascading Stage is nonlinear

S|

2 —{ e
. Aech Aeeh .
: el Y :
Jecl

S1ec.1 = (S1,17510752,152.0) @ (S1,1751,052,1752,0)
S1eEc.0 = (51,151.0752,152.0) @ (—51,151,052,1752,0)
S2eEc.1 = (—51,151,052,1752.0) @ (S1,1751,052,1752,0)
S)eEc.0 = (51,151.0752,152.0) @ (S1,1751,0™52,152,0)

28

Error Cascading Stage is nonlinear

S|
52

Jecl Jecl

deh A=k
Jecl Jecl

Tecl

Non-completeness is broken !

S1,ec,1 = (S1,1751,0752,152,0) @ (S1,1751,052,1752,0)
S1,ec,0 = (61,151,0752,152,0) @ (—51,151,052,1752,0)
S2,ec,1 = (61,151,052,1752,0) @ (S1,1751,052,1752,0)
S2,ec,0 = (61,151,0752,152,0) @ (S1,1751,0752,152,0)

28

