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Redundancy Based Countermeasures

M —>| E(M) |—> i > Follows from classical fault

tolerance.
compare
\ / > Simple redundancy executes the

M —»l E(M) |—> C encryption twice and then compares

the result.

» Another method is to execute the
M ’l E(M) | > C encryption, take the ciphertext, decrypt
A l it, and compare the message.

compare
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Redundancy Based Countermeasures
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Source : Guo et. al., Security analysis of
concurrent error detection against

Hardware Redundancy differential fault analysis — Journal of
Cryptographic Engineering, 2014
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Simple s Best...

» Simplest form of Redundancy :

» Execute the encryption twice and then compares the
ciphertexts.

> Applications in safety and reliability
» Easy to implement

» Reasonably high fault coverage.

> Relatively low overhead.

» Used widely in industries.
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Attacks on Redundancy

e Guo et. al. (JCEN)

» Practically bypass concurrent error detection with biased faults.

» Patranabis et. al. (COSADE) |
» Biased faults to bypass time-redundancy. )

» Selmake et. al. (FDTC)
 Biased faults to bypass hardware-redundancy.

 Breier et. al. (JCEN)
» Practically bypass information redundancy.

* Wiersma et. al. (FDTC)
» Attack on commercial processors having ASIL-D security.
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Attacks on Redundancy

e Guo et. al. (JCEN)
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» Biased faults to bypass hardware-redundancy. i

 Breier et. al. (JCEN)
» Practically bypass information redundancy.

* Wiersma et. al. (FDTC)
» Attack on commercial processors having ASIL-D security.

13-Sep-18 © 14th WORKSHOP ON FAULT DIAGNOSIS AND TOLARENCE IN CRYPTOGRAPHY



Our Contributions

» Bypass the countermeasures

» Use the countermeasure to leak

> Use Biased Faults » Use Random Faults

» Corrupt all computation ‘ » Corrupt single branch
branches
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Our Contributions

» Bypass the countermeasures~> Use the countermeasure to leak

=i Even Countermeasures Leak

» Corrupt all computation ‘ » Corrupt single branch
branches
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SCA Assisted DFA

* Proposed in FDTC 2017 by Patranabis et. al.

*One Plus One is More than Two: A Practical Combination of Power
and Fault Analysis Attacks on PRESENT and PRESENT-Like Block
Ciphers.

» Uses side-channel to expose certain properties of bit permutation on
fault injection

o Attacks on unprotected implementation of bit-permutation based ciphers

<= _Here we use side-channel to capture the leakage from countermeasures
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SCA Assisted DFA: The Context of
Countermeasures

SCA *Two or more redundant cipher

Falﬂt x Leakage computation and equality check

of ciphertexts.

» Assumptions:

L Enc » Side-channel measurement
In ) from the comparison operation
Enc

 Random faults corrupting one
single computation branch.

1xa11aydi)

SCA Leakage (HW)

Correct Ciphertext
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The Main Ildea

* What we have and what we don't :
Correct ciphertexts: C - Known
« Faulty Ciphertexts: C* mmmmp Unknown
< <HW() = HW(C ¢ C*) mmmp Known (bytewise) >

HW () = w
(fi) choices for C*

<=

28 choices for C*

Can be low for certain choices of W
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Case Study I: AES
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* For each choice ofiV(§;) we have

98 (W?cs.,:)) choices for (k;, ;)

R|= 28XH'£€I (WE(S&L-))
Fl=1
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Case Study I: AES

For practical attack:

R|=2°x]1,c; (W?&i)) T R|< 2°7

Fl=1 « Fl< 2%

| Worst Case 8Best Case .
(wisy) = (1) =70 (i) = (s) =1
R|= 232 RI=2°
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Case Study I: AES

S = {17 2,3,.4,5,06,7, 8} s All possible HW values
Let's just consider m—)p S' — {3’ 4, 5}

232 232
(28)4
\ Fairly Reasonable

[On average, the 128-bit AES key can be recovered with 22 injections. ]

Worst Case: |JT|:
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PRESENT

Case Study |l
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*We want nibble-wise Hamming weights

» We get byte-wise Hamming weights

e How to get nibble-wise values for byte-wise values???
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*No two consecutive nibbles in a byte are active simultaneously

* Only 3 byte-wise Hamming weights can be observed: 0, 1, 2
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Case Study II: PRESENT

Templates: General approach for extracting nibble-wise Hamming weights

ST operation

0.3 » 4 possible byte values: 00, 08, 80, 88

 All are clearly distinguishable from
templates.

» Each nibble Hamming weight and nibble
value has one-to-one correspondence.

* We can uniquely extract the
ciphertexts.

Frequency of occurence

195 200 205 210 215 220
Amplitude

With 4 fault injections, the last round key can be determined u@
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Practical Validation

Laser fault injection on an ATmega328P 8-bit microcontroller

* Near-infrared diode pulse laser
o Maximum output power of 20 W

» For the experiments, 20x magnifying objective
lens was used

« As aDUT, ATmega328P was used — an 8-bit
microcontroller running at 16 MHz

« Chip was depackaged from the backside to be
accessible by the laser
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Practical Validation

Laser fault injection on an ATmega328P 8-bit microcontroller

« Total area vulnerable to experiments
was <1% of the entire chip area

» Reproducibility of faults was near to
100% with the same laser settings
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Practical Validation

HW of fault mask at X OR operation _HW of fault mask at XOR operation

101 0.35
—HW mask B
100 -—-HW mask 7
D3r —HW mask &
180 o -—-HW mask 5
2 025t —HW mask 4
= 188 e -—-HW mask 3
I=; =3
E e HW mashk 1
= .
T 1B < oasf HW mashk 0
85 T
1
= 0af
184 Fo T
183 f n.os|
182 : . . : 0 :
TBOD Ta TE2 TE3 TB4 180 185 190 200
time samplas Amplituda
HW of fault mask at ST operation HW of fault mask at ST operation
——HW mask B : [—HW mask &
230} [~ HWmask 7 - —HW mask 7
/_'__._-._ s —HW macsk 6 . 0.3 h i L W mack &
e -~ -HW mask 5 i I { - -—HW mzsk 5
=20r o N 2 0.25 | —HW mask 4
2 ff a | l i || il [~ —HW mask 3
3 210} 5 oo || [ | || N HW mask 2
= _— VL a HW mask 1
2 - = [ fhinf sl —HW mask 0
= =200 2 015 / T
3 | | i 4 E (. i
190} =T | | L II-: |
L: II 1 |! ] I : I I
18O 0.05 | I'| Y IR Y. L
‘| i -':'_ IIl'l' ’ I’-
170 . . . . ' o A Y e, ,
Irra 170 1yE2 17B4 ITRE 1TEBE i80 200 =210 220 230 240
time samplas Amplitude

(c) (d)
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Practical Validation

_I-I"H of fault mask at XOR operation

Amplitude

13-Sep-18

189
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2301
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190
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HW of fault mask at ST operation

17e2 1784 1TEE 1782

fimea samplas

(c)

17B0

—HW mask 4
F—-HW mask 3
HW mask 2
HW mask 1
—HW mask 0

—HW mask 4
-—-HW mask 3
HW mashk 2
HW mask 1

—HW mask 0

Frecuercy of occurence

Frequency of cccurrence
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HW of fault mask at XOR operation

| —HW mask 4
- -HW mask 3
03 HW mask 2
HW mask 1
025 —HW mask 0
na2r
1 =
o1}
005} oy
gl
180 185 190 195 200
Amplitude
0a HW of fault mask at ST operation
r'ﬂ —HW mask 4
| - -HW mask 3
ozsp | | Loy HW mask 2
| [\ HW mask 1
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I | |
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| | | |
o1f III I !
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|I h
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(d)
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Practical Validation

Cipher Code Size (bytes) Tenc Nexp  ([E].|F].|R])
AES-128 7570 0.326 226.98 (243 225 1)
PRESENT-80 7110 4.01 923.36 (24,4,1 )

[ 225 injections can be performed within a day !!! ]
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Summary

 Redundancy based countermeasures are simple and practical.
e Usage: very simple.
e Caution!!!

[ — They leak unless properly constructed. ]

* Potential Solutions:
— Mask the comparison block =) Resource overhead
— Redundancy at each round sy May not be secured

e Future works:
— Extension for more general form of redundancies.
— Low-cost but leakage-free countermeasure construction.
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Thank you
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Questions?
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Introduction

PLAINTEXT

1 |

ENCRYPTION
ALGORITHM

1 |

Differential Fault Analysis (DFA)

FAULT FREE
CIPHERTEXT

PLAINTEXT

1 |

ENCRYPTION
ALGORITHM

1

FAULTY
CIPHERTEXT

S

ANALYSIS

P

13-Sep-18

Most widely explored
Low fault complexity
Complex analysis
Fault Locations

— Datapath

— Key-schedule
Fault models

— Bit based

— Nibble based

— Byte based

— Multiple byte based
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Introduction

* Step 1: Biased Fault Injection
* Apply Q different fault intensities (f; )
* Induce biased faults (87 ()
* Collect faulty ciphertexts (C’l,,_.,Q)

K
i
fl.cQ S5 q

SBOX g

4 |(Non-linear)

i i Gk

7> XOR >

Step 2: Hypothesis Test with Biased Faults

~

K
Hypothetical
,§ Key Nibble %
Hypothetical - C
State Nibble SBOX Faulty
.| I -«—— XOR -~ Ciphertext
4 MNon-linear)| »° =~ / 4 Nibble

Given: C’ and a KNOWN fault bias f
Find: Most likely key nibble K

For all X, find § = SBOX~1(C'®K)
Accumulate pz = Y HD(S)
Select K=argmin p

* Biased Faults: Distribution of the faulty values are non-uniform.

*Bias is exploited for key extraction by means of Hypothesis Testing.

VN

ZeUtilizes device properties to the highest extent. >

*Requires only faulty ciphertexts — But many of them.

13-Sep-18
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Attacks on Redundancy

Original Store Original GS:f;ﬂ:e
Computation Result | !
Equal
: Compare
l Not Equal
Redundant ] oy
Computation ! SUppress/
Randomize

S.Patranabis, A.Chakraborty, P.H.Nguyen and D.Mukhopadhyay. A Biased Fault
Attack on the Time Redundancy Countermeasure for AES. In Proceedings of

Constructive Side Channel Analysis and Secure Design 2015 (COSADE 2015),
Berlin, Germany, April 2015
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Attacks on Redundancy

Faulti |
Oriainal Generate
rlglna_ Store Original Output
Computation Result

gaultz

Redundant

Computation
Randomize

Different Faults

S.Patranabis, A.Chakraborty, P.H.Nguyen and D.Mukhopadhyay. A Biased Fault
Attack on the Time Redundancy Countermeasure for AES. In Proceedings of

Constructive Side Channel Analysis and Secure Design 2015 (COSADE 2015),
Berlin, Germany, April 2015
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Attacks on Redundancy

Fault1
iai : Generate
Original Store Original : Ottt
Computation Result -
%ﬁulﬂ
Redundant
Computation

Identical Faults

S.Patranabis, A.Chakraborty, P.H.Nguyen and D.Mukhopadhyay. A Biased Fault
Attack on the Time Redundancy Countermeasure for AES. In Proceedings of

Constructive Side Channel Analysis and Secure Design 2015 (COSADE 2015),
Berlin, Germany, April 2015
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