DARTH'S SABER
A KEY EXFILTRATION ATTACK FOR SYMMETRIC CIPHERS USING LASER LIGHT

Vittorio Zaccaria, Maria Chiara Molteni, Filippo Melzani, Guido Bertoni

POLITECNICO DI MILANO / SECURITY PATTERN
FAULT DIAGNOSIS AND TOLERANCE IN CRYPTOGRAPHY WORKSHOP 2018 - AMSTERDAM NL

Created: 2018-09-13 Thu 10:05

INTRODUCTION

The attack scenario

GOAL OF THIS WORK

o Evaluate the effectiveness of exfiltrating a key from a FIA-protected circuit by
injecting double transient faults using two laser light beams.

e We present some theoretical consideration supported by a quantitative
information analysis on an AES implementation.

THE VICTIM CIRCUIT

Figure 1: Expected operation of the target device against which the attack will be mounted. k is an unobservable
variable within the boundary of the system.

e Assume a circuit computing g : F,' — F,” that produces an observable exception
through a FIA mitigation Q : FI* — F,' (e.g., Boneh et al, Eurocrypt '97).

e The mitigation produces an exception whenever the result g(p @ k) is different
from a golden reference g(p @ k).

flip 2-th bit flip o-th bit

O =

an
NP
O =
Y
N

Figure 2: The attack on both input and output buses can be simultaneous or sequential depending on the time it
takes to compute g.

e Inject single bit fault over the lines (or registers) that carry k & p.
e Later, inject a single bit fault over the lines that carry g(k @ p).

e Observe if any exception occurs.

IS IT FEASIBLE?

Figure 3: Agoyan et al., How to flip a bit?, 2010 IEEE 16th International On-Line Testing Symposium

e Varies a lot with devices and technology used (see previous session in this
conference!)

e In 2010, Agoyan et al. (IOLTS) produced faults in a software AES by targeting
SRAM cells.

e Same year, Trichina et al. (FDTC) produced faults in an ARM Cortex M3. SRAM
and Flash areas were very difficult to attack

FORMALIZATION OF THE ATTACK

Supporting concepts

flip 2-th bit flip o-th bit

O =

an
NP
O =
Y
N

Figure 4: The key concept here is that the mitigation can be seen as the answer from an oracle to an existentially
quantified boolean predicate.

The exception can be seen as a failed assertion of this boolean predicate:

Q(p,i,0) = Fk. g((k ® p)®)®° == gk @ p)

where x® is value x with the i’ bit flipped.

PIVOTAL VARIABLES

Given a function f : F}' — F), the i"”" input 8o(xX) = xo @ (7x) A xp

variable is pivotal iff
. Xo X1 X2 &0

Ax. f(x) # f(x®) 0 0 0 0

. 0) 0 1 1

where x®' is value x with the i’ bit flipped. 5 ’ 0 0
An influencing pair for f : F' — F, and variable 0 1 L 0
i is a pair (x, x®") witnessing that i is pivotal for 1 0 0 1
/. 1 0 1 0
1 1 0 1

1 1 1 1

Figure 5: Example.i =0 is
pivotal with influencing pair
(001,101)

An

L(f)for f:F - F)

and variable i is the quotient set of all
influencing pairs for f and i w.r.t. the

relation:

(x, x¥) =~ (x¥, x)

go(x) = x9 D (7x)) A xo

X0 X1 A2 80
0 0) 0) 0
(Os _ 51)
0 0) 1
0) 1 0 0
0) 1 1 Ny
(1, —.1) 1 0 0 1
R 0 1 0
1 1 0) 1
— 1 1 1
Figure 6: Example: i = 1 has an influencing set

composed of only two pairs (0 — 1,1 — 1).

MULTIPLE OUTPUT FUNCTIONS

Given a function g : |,' — F,' we might want to view it as a set of n functions
{8, : 0 € [1,n]} of the type F)' — [F21 so as to characterize each output bit of g with its
own set of influencing pairs.

Clearly, we are interested in unique influencing pairs that change only one output.
Enter the reduced influencing set.

A set R;(g,) is the
set 1,(g,) where pairs present in other
output bits have been removed, i.e.,

Ri(g,) = Ti(g.) — | Ii(gy)
J#o

Note that any set R;(g,) is exactly the
set of values for which the oracle Q
gives a positive answer.

(0303_)
(1909_)

go(X) = xo B (7x)) A Xy
g1(x) = xg A X A X,

(O’O’_)

RZ(gO) — IZ(gO) _ IZ(gl) — {(1909_)}
Ry(g1) = I,(g)) — Ir(gy) = {}

Figure 7: Example for a
function g(x) = [go(x), g1(x)].

EXAMPLE: RIS

For the vector function X(Q X1 X2
g: B - F,g(x) = [go(x), g1(x)] we get
the reduced influencing sets shown on 2o 000 PP ®
the right.
For example, if we manage to get a

81 °

positive answer when attacking (x;, g1)
we might recover the entire set of input

values. Figure 8: Example: size of influencing sets for the
considered multi-output function g = [go, g1

DERIVABLE INFORMATION

Let us consider i and o fixed; in principle, a positive answer from the oracle provides
an amount of self-information on the input equivalent to

a(i, 0) = —log, where p = |R;(g,)|

2n—1
Instead, the information quantity associated with a negative answer is:

2n—1 —p
2n—1

w = —log,

HOW TO EXPLOIT INFORMATION

We can produce an average information measure for both negative and positive
answers given by using the binary entropy function H,:

H,(i,0) = pa+ (1 — p)o where p = =

The binary entropy function can guide the attacker in identifying the most
““informing" input and output/combinations; in principle, one would want to
investigate combinations (i, 0) that have highest entropy, as the less entropic ones
might provide higher self-information less frequently.

EXAMPLE: COMPUTING INFORMATION

Considering the previous example, we get a binary entropy:

X0 X1 X2
g() 0.81 1 0.81
gl 0 0.81 0

In turn, this suggests to bit-flip the second input variable and the output of the first
function gy in order to obtain the maximum information.

EXAMPLE APPLICATION TO UNMASKED AES

|s there exploitable entropy within the SBox for this attack?

SELF-INFORMATION (SBOX)

A simulation analysis shows that there are only 24 combinations (among 64) that
provide an entropy 42 = 0.0659 different from O:

Xo X Xy X3 X4 Xs Xg X7

80 ° ° ° °

81 e ° ° °

82 ®

83 ¢ ¢

84 ° ° °

85 ° S ° °

86) ° °

87 ° ° °
* — h =0.0659

The entropy is very small, but the self-information associated with a positive outcome
is 7 as each non-null entropy point corresponds to a reduced influencing set
composed of a single influencing pair.

A practical attack to a single SBOX would go as follows;

1. An attacker selects a plain-text p and an input/output pair (i, o) among the 24 with
non-null entropy.

2. She then triggers encryption by injecting faults and observes if the system
generates any exception.

3. Assume no exception is raised; then the following predicate is true:

Jk. SBOX((k ® p)®)®° == SBOX(k @ p)

DERIVING THE KEY

To derive the key, we recall that the reduced influencing set for any non-null entropy
pair (i, o) of the SBOX is composed by a single influencing pair x.

This means that either k @ p = xor k ® p = x¥', i.e, for each bit j of the key we have

k]=x]€|9ﬁj,]€[07]/\]7él

COMPUTATIONAL COMPLEXITY

Attacker must evaluate at most 2’ values for p as she knows that the i bit does
not influence the exception generation.

By consequence, to derive the 112 bits from a 128 bit key, the attacker has to
perform 2048 injections (worst case).

EXAMPLE APPLICATION TO MASKED AES

|s an SCA-protected AES vulnerable to this attack?

MASKED IMPLEMENTATION (1ST ORDER PROTECTION)

flip i-th bit flip o-th bit
o o
P e—
Y \/ \/ :
EB S, > g S, > to oracle -
A / '
B <« 1M mo

Figure 11: In a masked implementation, a random mask m; is always added to the secret value, either an input or
an output of g.

No exception would correspond to the following satisfiability condition:
Q*(p,i,0) =3kmim,.
gk ®p®m)®,my,my)® ==
gk @ p®my,m,my)
=dk
SBOX((k @ p)®")®° ==
SBOX(k & p)

The latter being equivalent to the original oracle, we would obtain the same amount
of information regardless of masking.

COUNTERMEASURES

How to prevent this attack

COUNTERMEASURES / MAKE IT SMARTER

e Attacker has a relatively low probability of having a favourable result as she needs
to inject many faults for retrieving the key.

e The device could detect this anomalous situation and reduce the amount of
information provided back to the user; e.g., silencing exceptions randomly.

CONCLUSIONS

Have we learned something?

It is possible to exploit a double fault at the input and output of a function and
exploit fault attack mitigations to still get information out of it

It is possible to make some practical consideration in the case of AES.

Masking seems not an issue for attackers willing to use this method.

THANK YOU

