
Trouble at the CSIDH: Protecting CSIDH

with Dummy-Operations against Fault

Injection Attacks

FDTC 2020 - Fault Diagnosis and Tolerance in Cryptography workshop

Fabio Campos1, Matthias J. Kannwischer2, Michael Meyer1,3, Hiroshi Onuki4,

Marc Stöttinger5

1RheinMain University of Applied Sciences, Germany
2Radboud University, The Netherlands
3University of Würzburg, Germany
4University of Tokyo, Japan
5Continental AG, Germany



somewhere in the crypto-heaven ...

Comic art: Lua Campos
2 / 18



Preliminaries



Isogeny

• a map (φ : E → E ′) between two elliptic curves

• a group morphism φ(P + Q) = φ(P) + φ(Q)

• an algebraic map

• entirely determined by its kernel (i.e., by a single point)

3 / 18



CSIDH : algorithmic description

• let p = 4`1 · · · `n − 1 be prime, where `1, . . . , `n are small

distinct odd primes

• let EA : y2 = x3 + Ax2 + x be a supersingular elliptic curve in

Montgomery form over Fp

• points of orders `i for all 1 ≤ i ≤ n, which can be used as

input to compute an isogeny of degree `i ,

• private key = (e1, . . . , en), where |ei | = number of isogenies of

degree `i

• sign of ei determines if order-`i point on the curve or its twist

• ei ’s sampled from small interval [−m,m]

4 / 18



Union of cycles

• Nodes:

Supersingular curves over F419.

• Undirected edges:

3-, 5-, and 7-isogenies.

Graph mostly ”stolen” from Chloe Martindale

https://www.martindale.info/talks/QIT-Bristol.pdf
5 / 18

https://www.martindale.info/talks/QIT-Bristol.pdf


Dummy-based constant-time algorithms 1/2

Timing attacks

• number of isogenies depends on private key

• effort for multiplication depends on sign distribution of

private key

6 / 18



Real vs dummy isogenies - different computation blocks

K ,P
compute kernel:

[2]K , ..., [ `−1
2

]K

compute a′

compute ϕ(P)

compute [`]K

a′

ϕ(P)

Figure 1: Real isogeny

K ,P
compute kernel:

[2]P, ..., [ `−1
2

]P

compute a′

compute ϕ(P)

compute [`]P
[`]P

a

Figure 2: Dummy isogeny

dummy computation

required computation

7 / 18



What about dummy-free constant-time?

Timings for constant-time CSIDH implementations@x861

Group action evaluation Mcycles

not constant-time2 103

Meyer, Campos, Reith (MCR)3 298

Onuki, Aikawa, Yamazaki, Takagi (OYAT)4 230

dummy-free1 432

1optimized versions from https://ia.cr/2020/417
2almost unoptimized, see https://ia.cr/2018/782
3see https://ia.cr/2018/1198
4see https://ia.cr/2019/353

8 / 18

https://ia.cr/2020/417
https://ia.cr/2018/782
https://ia.cr/2018/1198
https://ia.cr/2019/353


Attacker models & simulation



Setup

• 3 attacker models with increasing capabilities

• attacker performs single fault injection per run

• repeatedly evaluation using same secret key

• injects during computation of group action

E0

ϕA

EA

ϕB

EB

ϕ̃A

EAB
?
= E ′AB

ϕ̃′B
attacked

9 / 18



1: Shotgun at the CSIDH

• weakest adversary model

• no control over location of fault injection

• ratio failures =̂ ratio “real” vs. “dummy”

Setup

• isogeny computations effort about 42%

• cost-simulation output transcript of all operations secret

• 100 randomly CSIDH512 keys and 500,000 fault injections

Impact

• correlation not strong enough

• key space reduction from 2256 to ≈ 2249

Photo: Rita Claveau on https://www.pinterest.it/
10 / 18

https://www.pinterest.it/


1: Shotgun at the CSIDH

• weakest adversary model

• no control over location of fault injection

• ratio failures =̂ ratio “real” vs. “dummy”

Setup

• isogeny computations effort about 42%

• cost-simulation output transcript of all operations secret

• 100 randomly CSIDH512 keys and 500,000 fault injections

Impact

• correlation not strong enough

• key space reduction from 2256 to ≈ 2249

Photo: Rita Claveau on https://www.pinterest.it/
10 / 18

https://www.pinterest.it/


1: Shotgun at the CSIDH

• weakest adversary model

• no control over location of fault injection

• ratio failures =̂ ratio “real” vs. “dummy”

Setup

• isogeny computations effort about 42%

• cost-simulation output transcript of all operations secret

• 100 randomly CSIDH512 keys and 500,000 fault injections

Impact

• correlation not strong enough

• key space reduction from 2256 to ≈ 2249

Photo: Rita Claveau on https://www.pinterest.it/
10 / 18

https://www.pinterest.it/


2: Aiming at isogenies at index i

• slightly more powerful

• target i-th isogeny computation

Setup

• deterministic computation of ei : real then dummy5

• out of order due to point rejections, point rejection

probability = 1/`i

• sequence of first 23 isogenies is almost deterministic

Impact

• best case: key space reduction from 2256 to 2177

Photo: Piotr Wilk on https://unsplash.com/
5see https://ia.cr/2020/1006 for randomize order

11 / 18

https://unsplash.com/
https://ia.cr/2020/1006


2: Aiming at isogenies at index i

• slightly more powerful

• target i-th isogeny computation

Setup

• deterministic computation of ei : real then dummy5

• out of order due to point rejections, point rejection

probability = 1/`i

• sequence of first 23 isogenies is almost deterministic

Impact

• best case: key space reduction from 2256 to 2177

Photo: Piotr Wilk on https://unsplash.com/
5see https://ia.cr/2020/1006 for randomize order

11 / 18

https://unsplash.com/
https://ia.cr/2020/1006


2: Aiming at isogenies at index i

• slightly more powerful

• target i-th isogeny computation

Setup

• deterministic computation of ei : real then dummy5

• out of order due to point rejections, point rejection

probability = 1/`i

• sequence of first 23 isogenies is almost deterministic

Impact

• best case: key space reduction from 2256 to 2177

Photo: Piotr Wilk on https://unsplash.com/
5see https://ia.cr/2020/1006 for randomize order

11 / 18

https://unsplash.com/
https://ia.cr/2020/1006


3: Aiming at isogeny computations and tracing the order

• most powerful attacker model

• able to trace the order (SPA) of the

attacked isogeny

Setup

• binary search for each individual degree to identify first

dummy isogeny

Impact

• on MCR: full key recovery requires 178 injections

• on OAYT: 178 injections  space reduction to 267.04 (average

case); further reducible to ≈ 234.5 (meet-in-the-middle6)

Photo: Alan Belmer on https://freeimages.com/
6see https://ia.cr/2018/383

12 / 18

https://freeimages.com/
https://ia.cr/2018/383


3: Aiming at isogeny computations and tracing the order

• most powerful attacker model

• able to trace the order (SPA) of the

attacked isogeny

Setup

• binary search for each individual degree to identify first

dummy isogeny

Impact

• on MCR: full key recovery requires 178 injections

• on OAYT: 178 injections  space reduction to 267.04 (average

case); further reducible to ≈ 234.5 (meet-in-the-middle6)

Photo: Alan Belmer on https://freeimages.com/
6see https://ia.cr/2018/383

12 / 18

https://freeimages.com/
https://ia.cr/2018/383


3: Aiming at isogeny computations and tracing the order

• most powerful attacker model

• able to trace the order (SPA) of the

attacked isogeny

Setup

• binary search for each individual degree to identify first

dummy isogeny

Impact

• on MCR: full key recovery requires 178 injections

• on OAYT: 178 injections  space reduction to 267.04 (average

case); further reducible to ≈ 234.5 (meet-in-the-middle6)

Photo: Alan Belmer on https://freeimages.com/
6see https://ia.cr/2018/383

12 / 18

https://freeimages.com/
https://ia.cr/2018/383


Practical experiments



Setup

• plain C implementation

• reduced key space from 1174 to 32, secret keys ∈ {−1, 0, 1}
• isogenies with smallest degrees (3 and 5)

• ChipWhisperer-Lite ARM

E0

ϕA

EA

ϕB

EB

ϕ̃A

EAB
?
= E ′AB

ϕ̃′B attacked

precomputed

13 / 18



Setup

• plain C implementation

• reduced key space from 1174 to 32, secret keys ∈ {−1, 0, 1}
• isogenies with smallest degrees (3 and 5)

• ChipWhisperer-Lite ARM

E0

ϕA

EA

ϕB

EB

ϕ̃A

EAB
?
= E ′AB

ϕ̃′B attacked

precomputed

13 / 18



Accuracy of the results

Randomized attacks

type key # of trials faulty shared secret

attack 1

{0,0} 5000 19.8%

{0,1} 5000 27.3%

{-1,1} 5000 32.8%

attack 2
{0,1} 5000 2.1%

{-1,1} 5000 16.4%

Targeting critical spots

• empirically determined with manageable effort

• accuracy of over 95% (in attack 2 & 3) with single injection

14 / 18



Accuracy of the results

Randomized attacks

type key # of trials faulty shared secret

attack 1

{0,0} 5000 19.8%

{0,1} 5000 27.3%

{-1,1} 5000 32.8%

attack 2
{0,1} 5000 2.1%

{-1,1} 5000 16.4%

Targeting critical spots

• empirically determined with manageable effort

• accuracy of over 95% (in attack 2 & 3) with single injection

14 / 18



Countermeasures & performance



Countermeasures 1/2

Basic idea

• detect injections by changing arithmetic operations

Objectives

• fault injection  output an error

• countermeasures for dummy & real case keeping constant-time

• small overhead

Conditional functions

• cadd(x , y , b): returns x + by

• cadd2(x , y , b): returns bx + by

• csub(x , y , b): returns x − by

• cverify(x , y , b), checks x = y , only outputs result if b = 1

15 / 18



Countermeasures 1/2

Basic idea

• detect injections by changing arithmetic operations

Objectives

• fault injection  output an error

• countermeasures for dummy & real case keeping constant-time

• small overhead

Conditional functions

• cadd(x , y , b): returns x + by

• cadd2(x , y , b): returns bx + by

• csub(x , y , b): returns x − by

• cverify(x , y , b), checks x = y , only outputs result if b = 1

15 / 18



Countermeasures 1/2

Basic idea

• detect injections by changing arithmetic operations

Objectives

• fault injection  output an error

• countermeasures for dummy & real case keeping constant-time

• small overhead

Conditional functions

• cadd(x , y , b): returns x + by

• cadd2(x , y , b): returns bx + by

• csub(x , y , b): returns x − by

• cverify(x , y , b), checks x = y , only outputs result if b = 1

15 / 18



Countermeasures 2/2

Algorithm 1: Toy example

1 Set π+ ← 1, π− ← 1

2 for i ∈ {1, . . . , (`− 1)/2} do

3 t0 ← cadd(Xi ,Zi , b) // t0 = Xi | t0 = Xi + Zi

4 t1 ← csub(Xi ,Zi , b) // t1 = Xi | t1 = Xi − Zi

5 π+ ← π+ · t0 // π+ =
∏

Xi | π+ =
∏

(Xi + Zi )

6 π− ← π− · t1 // π− =
∏

Xi | π− =
∏

(Xi − Zi )

7 error ← cverify(π+, π−,¬b) // if b = 0: verify that π+ = π−

where b = 0 if dummy, and b = 1 for the real case

16 / 18



Conclusions

• relatively small overhead 5% (STM32F407) to 7%

(STM32F3037)

• some countermeasures applicable to dummy-free variants

• CSIDH painfully slow  experiments with full scheme

infeasible

• ChipWhisperer: perfectly adequate

7core on ChipWhisperer-Lite
17 / 18



Conclusions

• relatively small overhead 5% (STM32F407) to 7%

(STM32F3037)

• some countermeasures applicable to dummy-free variants

• CSIDH painfully slow  experiments with full scheme

infeasible

• ChipWhisperer: perfectly adequate

7core on ChipWhisperer-Lite
17 / 18



Conclusions

• relatively small overhead 5% (STM32F407) to 7%

(STM32F3037)

• some countermeasures applicable to dummy-free variants

• CSIDH painfully slow  experiments with full scheme

infeasible

• ChipWhisperer: perfectly adequate

7core on ChipWhisperer-Lite
17 / 18



Conclusions

• relatively small overhead 5% (STM32F407) to 7%

(STM32F3037)

• some countermeasures applicable to dummy-free variants

• CSIDH painfully slow  experiments with full scheme

infeasible

• ChipWhisperer: perfectly adequate

7core on ChipWhisperer-Lite
17 / 18



Paper: https://ia.cr/2020/1005

Code: https://github.com/csidhfi/csidhfi

Thank you for your attention!

Alice by engin akyurt, Bob by Philipp Lansing on https://unsplash.com/
18 / 18

https://ia.cr/2020/1005
https://github.com/csidhfi/csidhfi
https://unsplash.com/

	Preliminaries
	Attacker models & simulation
	Practical experiments
	Countermeasures & performance

