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Preliminaries



Isogeny

• a map (φ : E → E ′) between two elliptic curves

• a group morphism φ(P + Q) = φ(P) + φ(Q)

• an algebraic map

• entirely determined by its kernel (i.e., by a single point)
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CSIDH : algorithmic description

• let p = 4`1 · · · `n − 1 be prime, where `1, . . . , `n are small

distinct odd primes

• let EA : y2 = x3 + Ax2 + x be a supersingular elliptic curve in

Montgomery form over Fp

• points of orders `i for all 1 ≤ i ≤ n, which can be used as

input to compute an isogeny of degree `i ,

• private key = (e1, . . . , en), where |ei | = number of isogenies of

degree `i

• sign of ei determines if order-`i point on the curve or its twist

• ei ’s sampled from small interval [−m,m]
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Union of cycles

• Nodes:

Supersingular curves over F419.

• Undirected edges:

3-, 5-, and 7-isogenies.

Graph mostly ”stolen” from Chloe Martindale

https://www.martindale.info/talks/QIT-Bristol.pdf
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Dummy-based constant-time algorithms 1/2

Timing attacks

• number of isogenies depends on private key

• effort for multiplication depends on sign distribution of

private key
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Real vs dummy isogenies - different computation blocks
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compute kernel:

[2]K , ..., [ `−1
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Figure 1: Real isogeny
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Figure 2: Dummy isogeny

dummy computation

required computation
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What about dummy-free constant-time?

Timings for constant-time CSIDH implementations@x861

Group action evaluation Mcycles

not constant-time2 103

Meyer, Campos, Reith (MCR)3 298

Onuki, Aikawa, Yamazaki, Takagi (OYAT)4 230

dummy-free1 432

1optimized versions from https://ia.cr/2020/417
2almost unoptimized, see https://ia.cr/2018/782
3see https://ia.cr/2018/1198
4see https://ia.cr/2019/353
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Attacker models & simulation



Setup

• 3 attacker models with increasing capabilities

• attacker performs single fault injection per run

• repeatedly evaluation using same secret key

• injects during computation of group action

E0

ϕA

EA

ϕB

EB

ϕ̃A

EAB
?
= E ′AB

ϕ̃′B
attacked
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1: Shotgun at the CSIDH

• weakest adversary model

• no control over location of fault injection

• ratio failures =̂ ratio “real” vs. “dummy”

Setup

• isogeny computations effort about 42%

• cost-simulation output transcript of all operations secret

• 100 randomly CSIDH512 keys and 500,000 fault injections

Impact

• correlation not strong enough

• key space reduction from 2256 to ≈ 2249

Photo: Rita Claveau on https://www.pinterest.it/
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2: Aiming at isogenies at index i

• slightly more powerful

• target i-th isogeny computation

Setup

• deterministic computation of ei : real then dummy5

• out of order due to point rejections, point rejection

probability = 1/`i

• sequence of first 23 isogenies is almost deterministic

Impact

• best case: key space reduction from 2256 to 2177

Photo: Piotr Wilk on https://unsplash.com/
5see https://ia.cr/2020/1006 for randomize order
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3: Aiming at isogeny computations and tracing the order

• most powerful attacker model

• able to trace the order (SPA) of the

attacked isogeny

Setup

• binary search for each individual degree to identify first

dummy isogeny

Impact

• on MCR: full key recovery requires 178 injections

• on OAYT: 178 injections  space reduction to 267.04 (average

case); further reducible to ≈ 234.5 (meet-in-the-middle6)

Photo: Alan Belmer on https://freeimages.com/
6see https://ia.cr/2018/383
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Practical experiments



Setup

• plain C implementation

• reduced key space from 1174 to 32, secret keys ∈ {−1, 0, 1}
• isogenies with smallest degrees (3 and 5)

• ChipWhisperer-Lite ARM

E0

ϕA

EA

ϕB

EB

ϕ̃A

EAB
?
= E ′AB

ϕ̃′B attacked

precomputed
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Accuracy of the results

Randomized attacks

type key # of trials faulty shared secret

attack 1

{0,0} 5000 19.8%

{0,1} 5000 27.3%

{-1,1} 5000 32.8%

attack 2
{0,1} 5000 2.1%

{-1,1} 5000 16.4%

Targeting critical spots

• empirically determined with manageable effort

• accuracy of over 95% (in attack 2 & 3) with single injection
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Countermeasures & performance



Countermeasures 1/2

Basic idea

• detect injections by changing arithmetic operations

Objectives

• fault injection  output an error

• countermeasures for dummy & real case keeping constant-time

• small overhead

Conditional functions

• cadd(x , y , b): returns x + by

• cadd2(x , y , b): returns bx + by

• csub(x , y , b): returns x − by

• cverify(x , y , b), checks x = y , only outputs result if b = 1
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Countermeasures 2/2

Algorithm 1: Toy example

1 Set π+ ← 1, π− ← 1

2 for i ∈ {1, . . . , (`− 1)/2} do

3 t0 ← cadd(Xi ,Zi , b) // t0 = Xi | t0 = Xi + Zi

4 t1 ← csub(Xi ,Zi , b) // t1 = Xi | t1 = Xi − Zi

5 π+ ← π+ · t0 // π+ =
∏

Xi | π+ =
∏

(Xi + Zi )

6 π− ← π− · t1 // π− =
∏

Xi | π− =
∏

(Xi − Zi )

7 error ← cverify(π+, π−,¬b) // if b = 0: verify that π+ = π−

where b = 0 if dummy, and b = 1 for the real case
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Conclusions

• relatively small overhead 5% (STM32F407) to 7%

(STM32F3037)

• some countermeasures applicable to dummy-free variants

• CSIDH painfully slow  experiments with full scheme

infeasible

• ChipWhisperer: perfectly adequate

7core on ChipWhisperer-Lite
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Paper: https://ia.cr/2020/1005

Code: https://github.com/csidhfi/csidhfi

Thank you for your attention!

Alice by engin akyurt, Bob by Philipp Lansing on https://unsplash.com/
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