Trouble at the CSIDH: Protecting CSIDH
with Dummy-Operations against Fault
Injection Attacks

FDTC 2020 - Fault Diagnosis and Tolerance in Cryptography workshop

Fabio Camposl, Matthias J. Kannwischer?, Michael Meyer1'3, Hiroshi Onuki?,
Marc Stottinger®

LRheinMain University of Applied Sciences, Germany
2Radboud University, The Netherlands

3University of Wiirzburg, Germany

4University of Tokyo, Japan

5Continental AG, Germany

somewhere in the crypto-heaven

LET US FINALLY
DESTROY SOMETHING!

THAT'S BORING!!! LET'S ATTACK
SOME FANCY STUFF LIKE ...
DUMMY-BASED
CONSTANT-TIME CSIDOH/

OK, OK! WHAT ABOUT ...
ONLY DEFINING & SIMULATING
SOME ATTACKS?

SIMULATION, MY A
AS SOON AS YOU
NOT PAYING ATTENTION,
I'M GONNA HIT IT SO00
HARD!

/=7

Comic art: Lua Campos

WHAAAT?/?
DO YOU WANT TO ATTACK
SOME BLOCKCHAIN AGAIN?

PLEASE DO NOT/
WE'RE HAVING ENOUGH
TROUBLE IN THE WORLD

RIGHT NOW/

WELL ... IF T KNOW SOME
WEAK POINTS, T MIGHT BE ABLE
TO PROTECT IT BETTER.

2/18

Preliminaries

a map (¢ : E — E’) between two elliptic curves
e a group morphism ¢(P + Q) = ¢(P) + ¢(Q)

an algebraic map

entirely determined by its kernel (i.e., by a single point)

3/18

CSIDH : algorithmic description

e let p=4~¢1---L£, — 1 be prime, where ¢1,...,¢, are small
distinct odd primes

o let E4: y? = x3 4+ Ax? + x be a supersingular elliptic curve in
Montgomery form over I,

e points of orders ¢; for all 1 < i < n, which can be used as
input to compute an isogeny of degree /;,

e private key = (ey, ..., e,), where |e;| = number of isogenies of
degree ¢;
e sign of e; determines if order-¢; point on the curve or its twist

e ¢;'s sampled from small interval [—m, m]

4/18

Union of cycles

——— o

J
INIPIAIAK
O PEE:

= .
’.“‘2“‘1"";. e Nodes:

e
11 NN
7 NFLL
/ ,

] 7252505\
7~ N

Supersingular curves over [Fy419.

./,3245 e Undirected edges:

3-, 5-, and 7-isogenies.

Graph mostly "stolen” from Chloe Martindale

https://www.martindale.info/talks/QIT-Bristol.pdf
5/18

https://www.martindale.info/talks/QIT-Bristol.pdf

Dummy-based constant-time algorithms

Timing attacks

e number of isogenies depends on private key

e effort for multiplication depends on sign distribution of
private key

6/18

Real vs dummy isogenies - different computation blocks

a/

compute kernel: — compute a 4——
K.P |, o

2K, ... 52K)

——compute ¢(P)————
\—> compute [(]K
Figure 1: Real isogeny
required computation

compute kernel: — compute a’

K. P

2]P, ..., [%]P @) dummy computation
———compute ¢(P

\—> compute [¢]P —%

Figure 2: Dummy isogeny 7/18

What about dummy-free constant-time?

Timings for constant-time CSIDH implementations@x86*

Group action evaluation | Mcycles

not constant-time? 103

Meyer, Campos, Reith (MCR)3 298

Onuki, Aikawa, Yamazaki, Takagi (OYAT)* 230
dummy-free! 432

optimized versions from https://ia.cr/2020/417
2almost unoptimized, see https://ia.cr/2018/782
3see https://ia.cr/2018/1198

“see https://ia.cr/2019/353
8/18

https://ia.cr/2020/417
https://ia.cr/2018/782
https://ia.cr/2018/1198
https://ia.cr/2019/353

Attacker models & simulation

e 3 attacker models with increasing capabilities
e attacker performs single fault injection per run
e repeatedly evaluation using same secret key

e injects during computation of group action

PA
Eo Ea
A
rd at - attacked
¥B ke ‘/', QOB
z’/
2 /
Ep Eas L Epg
PA

9/18

1: Shotgun at the CSIDH

o weakest adversary model

]

e no control over location of fault injection

e ratio failures = ratio “real” vs. “dummy”

)

Photo: Rita Claveau on https://www.pinterest.it/
10/18

https://www.pinterest.it/

1: Shotgun at the CSIDH

o weakest adversary model

]

e no control over location of fault injection

e ratio failures = ratio “real” vs. “dummy”

)

Setup
e isogeny computations effort about 42%

e cost-simulation output transcript of all operations secret

e 100 randomly CSIDH512 keys and 500,000 fault injections

Photo: Rita Claveau on https://www.pinterest.it/
10/18

https://www.pinterest.it/

1: Shotgun at the CSIDH

o weakest adversary model

]

e no control over location of fault injection

e ratio failures = ratio “real” vs. “dummy”

)

Setup
e isogeny computations effort about 42%
e cost-simulation output transcript of all operations secret

e 100 randomly CSIDH512 keys and 500,000 fault injections

Impact
e correlation not strong enough

e key space reduction from 2250 to ~ 2249
Photo: Rita Claveau on https://www.pinterest.it/

10/18

https://www.pinterest.it/

2: Aiming at isogenies at index i

e slightly more powerful

e target /-th isogeny computation

Photo: Piotr Wilk on https://unsplash.com/

°see https://ia.cr/2020/1006 for randomize order
11/18

https://unsplash.com/
https://ia.cr/2020/1006

2: Aiming at isogenies at index i

e slightly more powerful

e target /-th isogeny computation

Setup
e deterministic computation of ¢; : real then dummy?®

e out of order due to point rejections, point rejection
probability = 1//;

e sequence of first 23 isogenies is almost deterministic

Photo: Piotr Wilk on https://unsplash.com/

°see https://ia.cr/2020/1006 for randomize order
11/18

https://unsplash.com/
https://ia.cr/2020/1006

2: Aiming at isogenies at index i

e slightly more powerful

e target /-th isogeny computation

Setup
e deterministic computation of ¢; : real then dummy?®

e out of order due to point rejections, point rejection
probability = 1//;

e sequence of first 23 isogenies is almost deterministic

Impact

e best case: key space reduction from 2290 to 2177

Photo: Piotr Wilk on https://unsplash.com/
®see https://ia.cr/2020/1006 for randomize order

11/18

https://unsplash.com/
https://ia.cr/2020/1006

3: Aiming at isogeny computations and tracing the order

e most powerful attacker model

e able to trace the order (SPA) of the
attacked isogeny

Photo: Alan Belmer on https://freeimages.com/

®see https://ia.cr/2018/383
12/18

https://freeimages.com/
https://ia.cr/2018/383

3: Aiming at isogeny computations and tracing the order

e most powerful attacker model

e able to trace the order (SPA) of the
attacked isogeny

Setup

e binary search for each individual degree to identify first
dummy isogeny

Photo: Alan Belmer on https://freeimages.com/

®see https://ia.cr/2018/383
12/18

https://freeimages.com/
https://ia.cr/2018/383

3: Aiming at isogeny computations and tracing the order

e most powerful attacker model

e able to trace the order (SPA) of the
attacked isogeny

Setup
e binary search for each individual degree to identify first

dummy isogeny

Impact
e on MCR: full key recovery requires 178 injections
e on OAYT: 178 injections ~ space reduction to 2974 (average

case); further reducible to ~ 2345 (meet-in-the-middle®)

Photo: Alan Belmer on https://freeimages.com/
®see https://ia.cr/2018/383

12/18

https://freeimages.com/
https://ia.cr/2018/383

Practical experiments

e plain C implementation

e reduced key space from 1174 to 32, secret keys € {—1,0,1}
e isogenies with smallest degrees (3 and 5)

e ChipWhisperer-Lite ARM

13/18

e plain C implementation

e reduced key space from 1174 to 32, secret keys € {—1,0,1}
e isogenies with smallest degrees (3 and 5)

e ChipWhisperer-Lite ARM

PA
Eo Ea
=
& 0
& & precomputed
/"’ ',., ~/
. ./
vB & ¥ attacked
"., /,
4 .
VA
"
Ep Eae L Epp
PA

13/18

Accuracy of the results

Randomized attacks

type key # of trials faulty shared secret
{0,0} 5000 19.8%
attack 1 | {0,1} 5000 27.3%
{-1,1} 5000 32.8%
{0,1} 5000 2.1%

attack 2
{-1,1} 5000 16.4%

14 /18

Accuracy of the results

Randomized attacks

type key # of trials faulty shared secret
{0,0} 5000 19.8%
attack 1 | {0,1} 5000 27.3%
{-1,1} 5000 32.8%
{0,1} 5000 2.1%

attack 2
{-1,1} 5000 16.4%

Targeting critical spots
e empirically determined with manageable effort

e accuracy of over 95% (in attack 2 & 3) with single injection

14 /18

Countermeasures & performance

Countermeasures

Basic idea

e detect injections by changing arithmetic operations

15/18

Countermeasures

Basic idea

e detect injections by changing arithmetic operations

Objectives
e fault injection ~» output an error
e countermeasures for dummy & real case keeping constant-time

e small overhead

15/18

Countermeasures

Basic idea

e detect injections by changing arithmetic operations

Objectives
e fault injection ~» output an error
e countermeasures for dummy & real case keeping constant-time

e small overhead

Conditional functions

cadd(x, y, b): returns x + by

cadd2(x,y, b): returns bx + by

csub(x, y, b): returns x — by

cverify(x,y, b), checks x = y, only outputs result if b =1

15/18

Countermeasures

Algorithm 1: Toy example

1 Setmmy 1, m— <1

2 forie{l,...,(¢—1)/2} do

3 to + cadd(X;, Z;, b) /=X | to=Xi+2Z
4 tlecsub(X,-,Z,’,b) // 1 =X | t1 =X;—Z
5 T = T - b /e =T1X | e =T1(XG + Zi)
6 T_ <—7— -t // 7L:HX,- | 7T7:H(X,'—Z,')
7 error < cverify(m4,m_,b) // if b=0: verify that my = m_

where b = 0 if dummy, and b = 1 for the real case

16/18

Conclusions

e relatively small overhead 5% (STM32F407) to 7%
(STM32F3037)

"core on ChipWhisperer-Lite
17/18

Conclusions

e relatively small overhead 5% (STM32F407) to 7%
(STM32F3037)

e some countermeasures applicable to dummy-free variants

"core on ChipWhisperer-Lite
17/18

Conclusions

e relatively small overhead 5% (STM32F407) to 7%
(STM32F3037)

e some countermeasures applicable to dummy-free variants

e CSIDH painfully slow ~» experiments with full scheme
infeasible

"core on ChipWhisperer-Lite
17/18

Conclusions

relatively small overhead 5% (STM32F407) to 7%
(STM32F3037)

some countermeasures applicable to dummy-free variants

CSIDH painfully slow ~~ experiments with full scheme
infeasible

ChipWhisperer: perfectly adequate

"core on ChipWhisperer-Lite
17/18

Paper: https://ia.cr/2020/1005
Code: https://github.com/csidhfi/csidhfi

Thank you for your attention!

SUT 808 ... IN A
OH ALICE ... YOU'RE QUANTUM WORLO
THE ONE FOR ME. HOW CAN WE 8E SURE?
IT'S LOOKING SPOOKIER
THAN EVER!

Alice by engin akyurt, Bob by Philipp Lansing on https://unsplash.com/
18/18

https://ia.cr/2020/1005
https://github.com/csidhfi/csidhfi
https://unsplash.com/

	Preliminaries
	Attacker models & simulation
	Practical experiments
	Countermeasures & performance

