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What is FIA?

• Physical Attacks 

• Actively disturbs functioning of the target 

• Exploits erroneous behavior

Injection Methods

• Global/Low-Cost/Low-Precision 

• Clock/Voltage glitch, temperature 

• Local/High-Cost/High-Precision 

• Laser, Electromagnetic, Ion Beam

Impacts

• Duration 

• Transient or Harmonic 

• Effects 

• Data or Flow Modification 

• Objectives 

• Corrupt computation, bypass security checks
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Fault Analysis
• Differential Fault Analysis (DFA)
• Usually few ciphertext pair
• Control over plaintext needed

• Statistical Fault Analysis (SFA)
• Need several ciphertext
• Several variants exist
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Limitations of SoA
• Very tight time synchronization on the round 

calculation and the injection timing
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Limitations of SoA
• Very tight time synchronization on the round 

calculation and the injection timing
• Very complicated analysis due to the random 

value and the fault propagation
• May not work if there are countermeasures 

against fault attacks

6



Table of Contents
1. Introduction to Fault Attacks 
2. Persistent Fault Analysis (PFA) 
3. PFA on Higher-Order Masking 
4. Fault Attack on Lattice based PQC 
5. Conclusions

7



Revisiting Fault types

1Zhang, Fan, Xiaoxuan Lou, Xinjie Zhao, Shivam Bhasin, Wei He, Ruyi Ding, Samiya Qureshi, and Kui Ren. "Persistent fault analysis 

on block ciphers." IACR Transactions on Cryptographic Hardware and Embedded Systems (2018): 150-172. 
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Revisiting Fault types
• Transient: Affect one encryption 
• Permanent: Always present 

• Persistent1: Hybrid model between transient and 
permanent. Persist over several encryptions but 
disappears on reboot. Typically targets stored 
constants (ex. Sbox in memory)

1Zhang, Fan, Xiaoxuan Lou, Xinjie Zhao, Shivam Bhasin, Wei He, Ruyi Ding, Samiya Qureshi, and Kui Ren. "Persistent fault analysis 

on block ciphers." IACR Transactions on Cryptographic Hardware and Embedded Systems (2018): 150-172. 
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Adversary Model
• Block cipher with serial implementation  
• Common Sbox as look-up table 
• Persistent fault injected in one Sbox element 
• Victim encrypts n plaintext with faulty Sbox 
• Adversary can observe the n ciphertext 
• No control on plaintext, except varying plaintext  

9



Persistent Fault Analysis: Main Idea
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PFA: Modus Operandi
• Statistical analysis on last round with ciphertext only
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• Fault changes one element xx* in Sbox (lets say 4X4 Sbox)
• Expectation E(x)= 0, E(x*)=2/16, E(y≠(x,x*))=1/16
• Three analysis strategies:

– tmin: find the missing value in Sbox table (x). Then k = tmin⊕ x;
– t ≠ tmin: find values t where  t ≠ tmin and eliminate candidates for k;
– tmax: find the value with max probability (x’). Then k = tmax ⊕ x*

• No. of ciphertext n can be determined by coupon collector’s problem
• x, x* can be brute-forced if not known 
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PFA on PRESENT and AES
PRESENT: n ≥50 AES: n ≥ 1560

n= Minimum no of ciphertext needed by  

coupon collector’s problem
12



Practical PFA on AES
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Practical results
Theoretical estimation n

avg
=2281 

1000 experiments
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Comparison vs Other Fault Attacks

(1) The attack is not differential in nature and thus the control 

over the plaintext is not required.  

(2) The adversary does not necessarily need live synchronization 

(3) The fault model remains relaxed (no biased faults needed) 

(4) PFA can also be applied in multiple fault setting 

(5) PFA can bypass some redundancy based countermeasures 

(6) An adversary can always inject the persistent fault before the 

victim is switched to the sensitive mode

(1) It needs higher number of 

ciphertexts as compared to DFA 

(2) Persistent faults can be 

detected by some built-in health 

test mechanism or fault counters.

14
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T-table corruption
• EM fault on ARM Cortex-M3 with 100% repeatability 
• Public AES implementation from Schwabe and Stoffelen 
• Single T-table,  
• 4 columns of 32 bits in the data buffer

15

𝑇 [𝑣] =

𝑆[𝑣] ∘ 01
𝑆[𝑣] ∘ 03
𝑆[𝑣] ∘ 02
𝑆[𝑣] ∘ 01

𝑇[𝑣∗] =
𝑎
𝑎  ∘ 03
𝑎 ∘ 02
𝑎

⇔ 𝑎  = 0

Fault condition

Fault on 4 columns = residual key entropy of 32 bits (practical to brute-force)

128-bit Flash memory access



Experimental Setup

• Target Chip: Public implementation on STM32F407VG (opt –O3) 

• Injection Time: Boot-up 

• Target Operation: Sbox transfer from Flash to RAM



Experimental Results

17



Further Improvements

18

No. of Persistent 
Faults

Ciphertext Needed Key Complexity Reference

1 2273 20 Zhang et al. TCHES 2018

1641 20 Zhang et al. TCHES 2020

1000 20 Xu et al. TCAD 2021

2/16 7775/1643 250 /250 Engels et al. FDTC 2020

1552/477 223 /224.5 Soleimany et al. TCHES 

2022

785/256 216 /20 Zhang et al. TCHES 2023

Other works further relax attack models, cipher construction



Dual Modular Redundancy (DMR) 

Countermeasure

• Compute twice and compare (REDMR) 

• Compute forward-inverse and compare (IDDMR) 

• If ≠ 

• NCO: No Ciphertext output 

• ZVO: Zero Value output 

• RCO: Random Ciphertext output 

• Provably secure against single fault 

• Adversary can either target the encryption or 

comparison but not both 

• REDMR broken by design if same S-box is used 

• Lets target IDDMR, more difficult of the two
19
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Attacking IDDMR with NCO/ZVO
• Faulty outputs are suppressed 
• Some output will be not affected 

by fault 
• Probability p of correct output is 

f(x,k) 
• p for AES 

• Adversary roughly needs n/p 
ciphertext 
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Attacking IDDMR with NCO/ZVO
• Faulty outputs are suppressed 
• Some output will be not affected 

by fault 
• Probability p of correct output is 

f(x,k) 
• p for AES 

• Adversary roughly needs n/p 
ciphertext 

N
min

= 1560/0.536= 2910 

N
avg

= 4234 (1000 experiments)

20



Attacking IDDMR with RCO
• Faulty output is replaced by uniformly 

random 
• Slight difference in distribution of 

random output and correct ciphertext 
• The bias can be detected with more 

ciphertext (n) 

• Roughly n≈10000 resulted in attack 
success
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Masking Countermeasure
• Masking is an algorithmic side-channel countermeasure 
• Based on Shamir’s secret sharing 
• Boolean Masking: 

– Secret x split into tuple (xm,m)  
– xm = x ⊕ m 
– m is randomly chosen on each execution 
– For higher order masking m is split in further shares 
– At masking order d: m =  m1 ⊕ m2 ⊕ m3 … ⊕ md 

• Removes dependency between x and side-channel leakage
23
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– For higher order masking m is split in further shares 
– At masking order d: m =  m1 ⊕ m2 ⊕ m3 … ⊕ md 

• Removes dependency between x and side-channel leakage
232 Pan, Jingyu, Fan Zhang, Kui Ren, and Shivam Bhasin. "One fault is all it needs: Breaking higher-order masking with persistent 

fault analysis." In 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1-6. IEEE, 2019.



Masking vs PFA
• Theoretically masking does not resist fault attacks 
• Several previous attack were presented on masking 
• They work in restrictive setting (advanced fault model, high no. of faults etc.) 
• Only One Fault to break 4 various public implementation of masking 
• Target Implementations: 

– Byte-wise Masking [SES, Virginia Tech] 
– Coron’s Table Masking [EuroCrypt 2014] 
– Rivian and Prouff Masking [CHES 2010] 
– Software Threshold [COSADE 2018]

24



PFA on Masking: Generic Attack
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Masking has no effect 

 on the distribution of the 

final ciphertext

PFA applies directly!!! 



PFA on Masking: Generic Attack
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Last Round of Encryption
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(Loaded from memory x 

x*)

xm	
(=x⊕ m)

S’

m m' L(m’)Precomputed masked Sbox k

c*L

c* = L(S’(x
m
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   =  L(S’(x)) ⊕ k ⊕  L(m’) ⊕ L(m’) 

   =  L(S’(x)) ⊕ k

Value c*=L(S’(x) ⊕ k) will be missing 

Value c*=L(S’(x*) ⊕ k) will be doubled 

➔ Allows key recovery with PFA 

m,m’ do not appear 

Also masking order does not matter

fault injection!



Attack Results on Public Code
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ONLY ONE FAULT
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Post-

Quantum 

Era

Post-Quantum Cryptography (PQC)

2016

NIST Call for Submission of 

Proposals for Post-

Quantum Cryptography 

for Standardization

2017

Deadline for Submissions 

69 Candidates 

Round-1

Round-2 Begins 

26 candidates

2019

2020

Round-3 (Final) Begins 

7 Finalist 

8 Alternate Finalists

First PQC Standards 

Announced

2022

2024

First Draft Standards  

Prepared for PQC 

Initiation of Wide-Scale 

Adoption

RSA-2048 expected to be 

broken by quantum 

computer

2038
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NIST PQC Standardization

First NIST PQC Standards (US): 
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PKE/KEMs Digital Signatures
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Learning With Error (LWE) Problem
• T =(A∗S+E) ∈ Zq

– Secret S ∈ Zqn
– A ∈ Zqn is public
– Error E derived from Gaussian distribution  

• The hard problem is to solve for S given several pairs (A, T) 
• Error component E is essential to hardness guarantees 

33



FIA on Kyber KeyGen

34

Key  
Generation

Alice Bob

Encapsulation

Decapsulation

Public Key*  

(pk*)

Ciphertext 

(ct)

Secret Key  
(sk)

Shared Session Key (K) Shared Session Key (K)

❑ Single execution to target Key Generation: Key Recovery Attack 

❑ Recover Secret key from Faulty but valid Public Key 



FIA on KeyGen: Reduce Entropy of Secret [RYB+23] 

35
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PRNG
a

Public Key (pk): (a,t) 

Secret Key (sk): (s)𝝈A
Sampler

𝞇A

PRNG
𝝈S

Sampler
𝞇S

x

s

PRNG
𝝈E

Sampler
𝞇E

e

+ t = a.s + e
(LWE Instance)



FIA on KeyGen: Reduce Entropy of Secret [RYB+23] 

35
[RYB+23] Ravi, Prasanna, Bolin Yang, Shivam Bhasin, Fan Zhang, and Anupam Chattopadhyay. "Fiddling the Twiddle Constants-Fault Injection Analysis 

of the Number Theoretic Transform." IACR Transactions on Cryptographic Hardware and Embedded Systems (2023): 447-481.

PRNG
a

Public Key (pk): (a,t) 

Secret Key (sk): (s)𝝈A
Sampler

𝞇A

PRNG
𝝈S

Sampler
𝞇S

x

s

PRNG
𝝈E

Sampler
𝞇E

e

+ t = a.s + e
(LWE Instance)



FIA on KeyGen: Reduce Entropy of Secret [RYB+23] 

35
[RYB+23] Ravi, Prasanna, Bolin Yang, Shivam Bhasin, Fan Zhang, and Anupam Chattopadhyay. "Fiddling the Twiddle Constants-Fault Injection Analysis 

of the Number Theoretic Transform." IACR Transactions on Cryptographic Hardware and Embedded Systems (2023): 447-481.

PRNG
a

Public Key (pk): (a,t) 

Secret Key (sk): (s)𝝈A
Sampler

𝞇A

PRNG
𝝈S

Sampler
𝞇S

x

s

PRNG
𝝈E

Sampler
𝞇E

e

+ t = a.s + e
(LWE Instance)

Polynomial multiplication is done  

using Number Theoretic Transform (NTT)
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Flash Memory

Twiddle Factor  
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Tw_Addr
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Tw_Addr* 2. Fetch  
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For jth twiddle factor

Observation: Can zeroize the entire twiddle factor array in a single fault 

25% of random memory locations yield zeros on ARM Cortex-M4 processor 

What happens when twiddle factors are zeroized???
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Conclusions
• Faults attack are a powerful attack vector 
• With good control over setup, even a single fault can be devastating 
• Demonstrated the power in context of block ciphers, protection mechanisms, 

PQC etc 
• A study of fault injection capabilities and fault analysis must go hand in hand 
• A lot is still left to explore 
• Are we moving towards formal analysis of security analysis against fault 

attacks and combined attacks?
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Thank You !!!
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