
Persistent Fault Analysis
The Persistent Threat

Shivam Bhasin

Temasek Labs
 NTU, Singapore

FDTC 2024

Table of Contents
1. Introduction to Fault Attacks
2. Persistent Fault Analysis (PFA)
3. PFA on Higher-Order Masking
4. Fault Attack on Lattice based PQC
5. Conclusions

2

Table of Contents
1. Introduction to Fault Attacks
2. Persistent Fault Analysis (PFA)
3. PFA on Higher-Order Masking
4. Fault Attack on Lattice based PQC
5. Conclusions

3

Fault Injection Attacks (FIA)

What is FIA?

• Physical Attacks

• Actively disturbs functioning of the target

• Exploits erroneous behavior
4

Fault Injection Attacks (FIA)

What is FIA?

• Physical Attacks

• Actively disturbs functioning of the target

• Exploits erroneous behavior

Injection Methods

• Global/Low-Cost/Low-Precision

• Clock/Voltage glitch, temperature

• Local/High-Cost/High-Precision

• Laser, Electromagnetic, Ion Beam

4

Fault Injection Attacks (FIA)

What is FIA?

• Physical Attacks

• Actively disturbs functioning of the target

• Exploits erroneous behavior

Injection Methods

• Global/Low-Cost/Low-Precision

• Clock/Voltage glitch, temperature

• Local/High-Cost/High-Precision

• Laser, Electromagnetic, Ion Beam

Impacts

• Duration

• Transient or Harmonic

• Effects

• Data or Flow Modification

• Objectives

• Corrupt computation, bypass security checks
4

Fault Analysis
• Differential Fault Analysis (DFA) • Statistical Fault Analysis (SFA)

5

Fault Analysis
• Differential Fault Analysis (DFA) • Statistical Fault Analysis (SFA)

P

k
E

C

5

Fault Analysis
• Differential Fault Analysis (DFA) • Statistical Fault Analysis (SFA)

P

k
E

C

E
k

P

C*

5

Fault Analysis
• Differential Fault Analysis (DFA)
• Usually few ciphertext pair
• Control over plaintext needed

• Statistical Fault Analysis (SFA)

P

k
E

C

E
k

P

C*

Analysis K=f(C,C*) 5

Fault Analysis
• Differential Fault Analysis (DFA)
• Usually few ciphertext pair
• Control over plaintext needed

• Statistical Fault Analysis (SFA)

P

k
E

C

E
k

P

C*

Analysis K=f(C,C*)

P
1

k
E

C
1
*

5

Fault Analysis
• Differential Fault Analysis (DFA)
• Usually few ciphertext pair
• Control over plaintext needed

• Statistical Fault Analysis (SFA)

P

k
E

C

E
k

P

C*

Analysis K=f(C,C*)

P
1

k
E

C
1
*

5

Fault Analysis
• Differential Fault Analysis (DFA)
• Usually few ciphertext pair
• Control over plaintext needed

• Statistical Fault Analysis (SFA)

P

k
E

C

E
k

P

C*

Analysis K=f(C,C*)

P
1

k
E

C
1
*

E
k

P
2

C
2
*

5

Fault Analysis
• Differential Fault Analysis (DFA)
• Usually few ciphertext pair
• Control over plaintext needed

• Statistical Fault Analysis (SFA)

P

k
E

C

E
k

P

C*

Analysis K=f(C,C*)

P
1

k
E

C
1
*

Analysis K=f(C1*,C2*, ...)

E
k

P
2

C
2
*

5

Fault Analysis
• Differential Fault Analysis (DFA)
• Usually few ciphertext pair
• Control over plaintext needed

• Statistical Fault Analysis (SFA)
• Need several ciphertext
• Several variants exist

P

k
E

C

E
k

P

C*

Analysis K=f(C,C*)

P
1

k
E

C
1
*

Analysis K=f(C1*,C2*, ...)

E
k

P
2

C
2
*

5

Limitations of SoA
• Very tight time synchronization on the round

calculation and the injection timing

6

Limitations of SoA
• Very tight time synchronization on the round

calculation and the injection timing
• Very complicated analysis due to the random

value and the fault propagation

6

Limitations of SoA
• Very tight time synchronization on the round

calculation and the injection timing
• Very complicated analysis due to the random

value and the fault propagation
• May not work if there are countermeasures

against fault attacks

6

Table of Contents
1. Introduction to Fault Attacks
2. Persistent Fault Analysis (PFA)
3. PFA on Higher-Order Masking
4. Fault Attack on Lattice based PQC
5. Conclusions

7

Revisiting Fault types

1Zhang, Fan, Xiaoxuan Lou, Xinjie Zhao, Shivam Bhasin, Wei He, Ruyi Ding, Samiya Qureshi, and Kui Ren. "Persistent fault analysis

on block ciphers." IACR Transactions on Cryptographic Hardware and Embedded Systems (2018): 150-172.

8

Revisiting Fault types
• Transient: Affect one encryption
• Permanent: Always present

• Persistent1: Hybrid model between transient and
permanent. Persist over several encryptions but
disappears on reboot. Typically targets stored
constants (ex. Sbox in memory)

1Zhang, Fan, Xiaoxuan Lou, Xinjie Zhao, Shivam Bhasin, Wei He, Ruyi Ding, Samiya Qureshi, and Kui Ren. "Persistent fault analysis

on block ciphers." IACR Transactions on Cryptographic Hardware and Embedded Systems (2018): 150-172.

8

Adversary Model
• Block cipher with serial implementation
• Common Sbox as look-up table
• Persistent fault injected in one Sbox element
• Victim encrypts n plaintext with faulty Sbox
• Adversary can observe the n ciphertext
• No control on plaintext, except varying plaintext

9

Persistent Fault Analysis: Main Idea

10

PFA: Modus Operandi
• Statistical analysis on last round with ciphertext only

11

PFA: Modus Operandi
• Statistical analysis on last round with ciphertext only
• Fault changes one element xx* in Sbox (lets say 4X4 Sbox)

11

PFA: Modus Operandi
• Statistical analysis on last round with ciphertext only
• Fault changes one element xx* in Sbox (lets say 4X4 Sbox)
• Expectation E(x)= 0, E(x*)=2/16, E(y≠(x,x*))=1/16

11

PFA: Modus Operandi
• Statistical analysis on last round with ciphertext only
• Fault changes one element xx* in Sbox (lets say 4X4 Sbox)
• Expectation E(x)= 0, E(x*)=2/16, E(y≠(x,x*))=1/16
• Three analysis strategies:

11

PFA: Modus Operandi
• Statistical analysis on last round with ciphertext only
• Fault changes one element xx* in Sbox (lets say 4X4 Sbox)
• Expectation E(x)= 0, E(x*)=2/16, E(y≠(x,x*))=1/16
• Three analysis strategies:

– tmin: find the missing value in Sbox table (x). Then k = tmin⊕ x;

11

PFA: Modus Operandi
• Statistical analysis on last round with ciphertext only
• Fault changes one element xx* in Sbox (lets say 4X4 Sbox)
• Expectation E(x)= 0, E(x*)=2/16, E(y≠(x,x*))=1/16
• Three analysis strategies:

– tmin: find the missing value in Sbox table (x). Then k = tmin⊕ x;
– t ≠ tmin: find values t where t ≠ tmin and eliminate candidates for k;

11

PFA: Modus Operandi
• Statistical analysis on last round with ciphertext only
• Fault changes one element xx* in Sbox (lets say 4X4 Sbox)
• Expectation E(x)= 0, E(x*)=2/16, E(y≠(x,x*))=1/16
• Three analysis strategies:

– tmin: find the missing value in Sbox table (x). Then k = tmin⊕ x;
– t ≠ tmin: find values t where t ≠ tmin and eliminate candidates for k;
– tmax: find the value with max probability (x’). Then k = tmax ⊕ x*

11

PFA: Modus Operandi
• Statistical analysis on last round with ciphertext only
• Fault changes one element xx* in Sbox (lets say 4X4 Sbox)
• Expectation E(x)= 0, E(x*)=2/16, E(y≠(x,x*))=1/16
• Three analysis strategies:

– tmin: find the missing value in Sbox table (x). Then k = tmin⊕ x;
– t ≠ tmin: find values t where t ≠ tmin and eliminate candidates for k;
– tmax: find the value with max probability (x’). Then k = tmax ⊕ x*

• No. of ciphertext n can be determined by coupon collector’s problem

11

PFA: Modus Operandi
• Statistical analysis on last round with ciphertext only
• Fault changes one element xx* in Sbox (lets say 4X4 Sbox)
• Expectation E(x)= 0, E(x*)=2/16, E(y≠(x,x*))=1/16
• Three analysis strategies:

– tmin: find the missing value in Sbox table (x). Then k = tmin⊕ x;
– t ≠ tmin: find values t where t ≠ tmin and eliminate candidates for k;
– tmax: find the value with max probability (x’). Then k = tmax ⊕ x*

• No. of ciphertext n can be determined by coupon collector’s problem
• x, x* can be brute-forced if not known

11

PFA on PRESENT and AES
PRESENT: n ≥50 AES: n ≥ 1560

n= Minimum no of ciphertext needed by

coupon collector’s problem
12

Practical PFA on AES

1000 1500 2000 2500 3000 3500 4000 4500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of ciphertexts

Pr
ob

ab
ili

ty

0 500 1000 1500 2000 2500
0

16

32

48

64

80

96

112

128

Sample size

R
es

id
ua

l k
ey

 e
nt

ro
py

Practical results
Theoretical estimation n

avg
=2281

1000 experiments

n ≈ 2000

13

Comparison vs Other Fault Attacks

(1) The attack is not differential in nature and thus the control

over the plaintext is not required.

(2) The adversary does not necessarily need live synchronization

(3) The fault model remains relaxed (no biased faults needed)

(4) PFA can also be applied in multiple fault setting

(5) PFA can bypass some redundancy based countermeasures

(6) An adversary can always inject the persistent fault before the

victim is switched to the sensitive mode

(1) It needs higher number of

ciphertexts as compared to DFA

(2) Persistent faults can be

detected by some built-in health

test mechanism or fault counters.

14

T-table corruption
• EM fault on ARM Cortex-M3 with 100% repeatability
• Public AES implementation from Schwabe and Stoffelen
• Single T-table,
• 4 columns of 32 bits in the data buffer

T-table corruption
• EM fault on ARM Cortex-M3 with 100% repeatability
• Public AES implementation from Schwabe and Stoffelen
• Single T-table,
• 4 columns of 32 bits in the data buffer

128-bit Flash memory access

T-table corruption
• EM fault on ARM Cortex-M3 with 100% repeatability
• Public AES implementation from Schwabe and Stoffelen
• Single T-table,
• 4 columns of 32 bits in the data buffer

15

𝑇 [𝑣] =

𝑆[𝑣] ∘ 01
𝑆[𝑣] ∘ 03
𝑆[𝑣] ∘ 02
𝑆[𝑣] ∘ 01

𝑇[𝑣∗] =
𝑎
𝑎 ∘ 03
𝑎 ∘ 02
𝑎

⇔ 𝑎 = 0

Fault condition

Fault on 4 columns = residual key entropy of 32 bits (practical to brute-force)

128-bit Flash memory access

Experimental Setup

• Target Chip: Public implementation on STM32F407VG (opt –O3)

• Injection Time: Boot-up

• Target Operation: Sbox transfer from Flash to RAM

Experimental Results

17

Further Improvements

18

No. of Persistent
Faults

Ciphertext Needed Key Complexity Reference

1 2273 20 Zhang et al. TCHES 2018

1641 20 Zhang et al. TCHES 2020

1000 20 Xu et al. TCAD 2021

2/16 7775/1643 250 /250 Engels et al. FDTC 2020

1552/477 223 /224.5 Soleimany et al. TCHES

2022

785/256 216 /20 Zhang et al. TCHES 2023

Other works further relax attack models, cipher construction

Dual Modular Redundancy (DMR)

Countermeasure

• Compute twice and compare (REDMR)

• Compute forward-inverse and compare (IDDMR)

• If ≠

• NCO: No Ciphertext output

• ZVO: Zero Value output

• RCO: Random Ciphertext output

• Provably secure against single fault

• Adversary can either target the encryption or

comparison but not both

• REDMR broken by design if same S-box is used

• Lets target IDDMR, more difficult of the two
19

E E

P

k k

P

C = C’?
C C’

Dual Modular Redundancy (DMR)

Countermeasure

• Compute twice and compare (REDMR)

• Compute forward-inverse and compare (IDDMR)

• If ≠

• NCO: No Ciphertext output

• ZVO: Zero Value output

• RCO: Random Ciphertext output

• Provably secure against single fault

• Adversary can either target the encryption or

comparison but not both

• REDMR broken by design if same S-box is used

• Lets target IDDMR, more difficult of the two

REDMR

19

E E

P

k k

P

C = C’?
C C’

E D

P

k k

P’
P= P’?

C

C’

Dual Modular Redundancy (DMR)

Countermeasure

• Compute twice and compare (REDMR)

• Compute forward-inverse and compare (IDDMR)

• If ≠

• NCO: No Ciphertext output

• ZVO: Zero Value output

• RCO: Random Ciphertext output

• Provably secure against single fault

• Adversary can either target the encryption or

comparison but not both

• REDMR broken by design if same S-box is used

• Lets target IDDMR, more difficult of the two

REDMR

IDDMR
19

Attacking IDDMR with NCO/ZVO
• Faulty outputs are suppressed
• Some output will be not affected

by fault
• Probability p of correct output is

f(x,k)
• p for AES

• Adversary roughly needs n/p
ciphertext

20

Attacking IDDMR with NCO/ZVO
• Faulty outputs are suppressed
• Some output will be not affected

by fault
• Probability p of correct output is

f(x,k)
• p for AES

• Adversary roughly needs n/p
ciphertext

N
min

= 1560/0.536= 2910

N
avg

= 4234 (1000 experiments)

20

Attacking IDDMR with RCO
• Faulty output is replaced by uniformly

random
• Slight difference in distribution of

random output and correct ciphertext
• The bias can be detected with more

ciphertext (n)

• Roughly n≈10000 resulted in attack
success

21

Attacking IDDMR with RCO
• Faulty output is replaced by uniformly

random
• Slight difference in distribution of

random output and correct ciphertext
• The bias can be detected with more

ciphertext (n)

• Roughly n≈10000 resulted in attack
success

21

Table of Contents
1. Introduction to Fault Attacks
2. Persistent Fault Analysis (PFA)
3. PFA on Higher-Order Masking
4. Fault Attack on Lattice based PQC
5. Conclusions

22

Masking Countermeasure
• Masking is an algorithmic side-channel countermeasure
• Based on Shamir’s secret sharing
• Boolean Masking:

– Secret x split into tuple (xm,m)
– xm = x ⊕ m
– m is randomly chosen on each execution
– For higher order masking m is split in further shares
– At masking order d: m = m1 ⊕ m2 ⊕ m3 … ⊕ md

• Removes dependency between x and side-channel leakage
23

Masking Countermeasure
• Masking is an algorithmic side-channel countermeasure
• Based on Shamir’s secret sharing
• Boolean Masking:

– Secret x split into tuple (xm,m)
– xm = x ⊕ m
– m is randomly chosen on each execution
– For higher order masking m is split in further shares
– At masking order d: m = m1 ⊕ m2 ⊕ m3 … ⊕ md

• Removes dependency between x and side-channel leakage
232 Pan, Jingyu, Fan Zhang, Kui Ren, and Shivam Bhasin. "One fault is all it needs: Breaking higher-order masking with persistent

fault analysis." In 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1-6. IEEE, 2019.

Masking vs PFA
• Theoretically masking does not resist fault attacks
• Several previous attack were presented on masking
• They work in restrictive setting (advanced fault model, high no. of faults etc.)
• Only One Fault to break 4 various public implementation of masking
• Target Implementations:

– Byte-wise Masking [SES, Virginia Tech]
– Coron’s Table Masking [EuroCrypt 2014]
– Rivian and Prouff Masking [CHES 2010]
– Software Threshold [COSADE 2018]

24

PFA on Masking: Generic Attack

25

Last Round of Encryption

S-box S
(Loaded from memory)

xm	
(=x⊕ m)

S

m m' L(m’)Precomputed masked Sbox k

cL

PFA on Masking: Generic Attack

25

Last Round of Encryption

S-box S
(Loaded from memory)

xm	
(=x⊕ m)

S

m m' L(m’)Precomputed masked Sbox k

cL

c = L(S(x
m

 ⊕ m) ⊕ m’) ⊕ k) ⊕ L(m’)

 = L(S(x ⊕ m ⊕ m) ⊕ m’) ⊕ k) ⊕ L(m’)

 = L(S(x)) ⊕ k ⊕ L(m’) ⊕ L(m’)

 = L(S(x)) ⊕ k

PFA on Masking: Generic Attack

25

Last Round of Encryption

S-box S
(Loaded from memory)

xm	
(=x⊕ m)

S

m m' L(m’)Precomputed masked Sbox k

cL

c = L(S(x
m

 ⊕ m) ⊕ m’) ⊕ k) ⊕ L(m’)

 = L(S(x ⊕ m ⊕ m) ⊕ m’) ⊕ k) ⊕ L(m’)

 = L(S(x)) ⊕ k ⊕ L(m’) ⊕ L(m’)

 = L(S(x)) ⊕ k

Masking has no effect

 on the distribution of the

final ciphertext

PFA on Masking: Generic Attack

25

Last Round of Encryption

S-box S
(Loaded from memory)

xm	
(=x⊕ m)

S

m m' L(m’)Precomputed masked Sbox k

cL

c = L(S(x
m

 ⊕ m) ⊕ m’) ⊕ k) ⊕ L(m’)

 = L(S(x ⊕ m ⊕ m) ⊕ m’) ⊕ k) ⊕ L(m’)

 = L(S(x)) ⊕ k ⊕ L(m’) ⊕ L(m’)

 = L(S(x)) ⊕ k

Masking has no effect

 on the distribution of the

final ciphertext

PFA applies directly!!!

PFA on Masking: Generic Attack

26

Last Round of Encryption

S-box S’
(Loaded from memory x

x*)

xm	
(=x⊕ m)

S’

m m' L(m’)Precomputed masked Sbox k

c*L

fault injection!

PFA on Masking: Generic Attack

26

Last Round of Encryption

S-box S’
(Loaded from memory x

x*)

xm	
(=x⊕ m)

S’

m m' L(m’)Precomputed masked Sbox k

c*L

c* = L(S’(x
m

 ⊕ m) ⊕ m’) ⊕ k) ⊕ L(m’)

 = L(S’(x ⊕ m ⊕ m) ⊕ m’) ⊕ k) ⊕ L(m’)

 = L(S’(x)) ⊕ k ⊕ L(m’) ⊕ L(m’)

 = L(S’(x)) ⊕ k

fault injection!

PFA on Masking: Generic Attack

26

Last Round of Encryption

S-box S’
(Loaded from memory x

x*)

xm	
(=x⊕ m)

S’

m m' L(m’)Precomputed masked Sbox k

c*L

c* = L(S’(x
m

 ⊕ m) ⊕ m’) ⊕ k) ⊕ L(m’)

 = L(S’(x ⊕ m ⊕ m) ⊕ m’) ⊕ k) ⊕ L(m’)

 = L(S’(x)) ⊕ k ⊕ L(m’) ⊕ L(m’)

 = L(S’(x)) ⊕ k

Value c*=L(S’(x) ⊕ k) will be missing

Value c*=L(S’(x*) ⊕ k) will be doubled

➔ Allows key recovery with PFA

m,m’ do not appear

Also masking order does not matter

fault injection!

Attack Results on Public Code

27

Design Fault Target No. of Ciphertext
(Masking Order)

Bytewise Masking

(Virginiatech)

Sbox

Recomputation

1560 (any)

Coron’s higher Order

Masking (Eurocrypt 2014)

Sbox

Recomputation

1560 (any)

Rivian & Prouff Masking

(CHES 2010)

Affine

transformation

2,500,000 (1)

[α 214d]

Software Threshold

(COSADE 2018)

Decomposition A’’’ 400,000 (1)

Attack Results on Public Code

27

Design Fault Target No. of Ciphertext
(Masking Order)

Bytewise Masking

(Virginiatech)

Sbox

Recomputation

1560 (any)

Coron’s higher Order

Masking (Eurocrypt 2014)

Sbox

Recomputation

1560 (any)

Rivian & Prouff Masking

(CHES 2010)

Affine

transformation

2,500,000 (1)

[α 214d]

Software Threshold

(COSADE 2018)

Decomposition A’’’ 400,000 (1)

ONLY ONE FAULT

Attack Results on Public Code

28
Rivian & Prouff Masking Software Threshold

Table of Contents
1. Introduction to Fault Attacks
2. Persistent Fault Analysis (PFA)
3. PFA on Higher-Order Masking
4. Fault Attack on Lattice based PQC
5. Conclusions

29

Post-

Quantum

Era

Post-Quantum Cryptography (PQC)

2016

NIST Call for Submission of

Proposals for Post-

Quantum Cryptography

for Standardization

2017

Deadline for Submissions

69 Candidates

Round-1

Round-2 Begins

26 candidates

2019

2020

Round-3 (Final) Begins

7 Finalist

8 Alternate Finalists

First PQC Standards

Announced

2022

2024

First Draft Standards

Prepared for PQC

Initiation of Wide-Scale

Adoption

RSA-2048 expected to be

broken by quantum

computer

2038

30

NIST PQC Standardization

First NIST PQC Standards (US):

31

PKE/KEMs Digital Signatures

Kyber (FIPS 203)
Dilithium (FIPS 204)

FALCON
SPHINCS+ (FIPS 205)

Lattice-based

Hash-based

Code-based

NIST PQC Standardization

First NIST PQC Standards (US):

31

PKE/KEMs Digital Signatures

Kyber (FIPS 203)
Dilithium (FIPS 204)

FALCON
SPHINCS+ (FIPS 205)

Lattice-based

Hash-based

Code-based

Round 4 PKE/
KEMs
BIKE

Classic Mceliece
HQC

NIST PQC Standardization

First NIST PQC Standards (US):

31

PKE/KEMs Digital Signatures

Kyber (FIPS 203)
Dilithium (FIPS 204)

FALCON
SPHINCS+ (FIPS 205)

Lattice-based

BSI Recommendations:

PKE/KEMs Digital Signatures
FrodoKEM XMSS

Classic Mceliece LMS

Hash-based

Code-based

Round 4 PKE/
KEMs
BIKE

Classic Mceliece
HQC

Learning With Error (LWE) Problem
• T =(A∗S+E) ∈ Zq

– Secret S ∈ Zqn
– A ∈ Zqn is public
– Error E derived from Gaussian distribution

• The hard problem is to solve for S given several pairs (A, T)
• Error component E is essential to hardness guarantees

33

FIA on Kyber KeyGen

34

Key
Generation

Alice Bob

Encapsulation

Decapsulation

Public Key*

(pk*)

Ciphertext

(ct)

Secret Key
(sk)

Shared Session Key (K) Shared Session Key (K)

❑ Single execution to target Key Generation: Key Recovery Attack

❑ Recover Secret key from Faulty but valid Public Key

FIA on KeyGen: Reduce Entropy of Secret [RYB+23]

35
[RYB+23] Ravi, Prasanna, Bolin Yang, Shivam Bhasin, Fan Zhang, and Anupam Chattopadhyay. "Fiddling the Twiddle Constants-Fault Injection Analysis

of the Number Theoretic Transform." IACR Transactions on Cryptographic Hardware and Embedded Systems (2023): 447-481.

PRNG
a

Public Key (pk): (a,t)

Secret Key (sk): (s)𝝈A
Sampler

𝞇A

PRNG
𝝈S

Sampler
𝞇S

x

s

PRNG
𝝈E

Sampler
𝞇E

e

+ t = a.s + e
(LWE Instance)

FIA on KeyGen: Reduce Entropy of Secret [RYB+23]

35
[RYB+23] Ravi, Prasanna, Bolin Yang, Shivam Bhasin, Fan Zhang, and Anupam Chattopadhyay. "Fiddling the Twiddle Constants-Fault Injection Analysis

of the Number Theoretic Transform." IACR Transactions on Cryptographic Hardware and Embedded Systems (2023): 447-481.

PRNG
a

Public Key (pk): (a,t)

Secret Key (sk): (s)𝝈A
Sampler

𝞇A

PRNG
𝝈S

Sampler
𝞇S

x

s

PRNG
𝝈E

Sampler
𝞇E

e

+ t = a.s + e
(LWE Instance)

FIA on KeyGen: Reduce Entropy of Secret [RYB+23]

35
[RYB+23] Ravi, Prasanna, Bolin Yang, Shivam Bhasin, Fan Zhang, and Anupam Chattopadhyay. "Fiddling the Twiddle Constants-Fault Injection Analysis

of the Number Theoretic Transform." IACR Transactions on Cryptographic Hardware and Embedded Systems (2023): 447-481.

PRNG
a

Public Key (pk): (a,t)

Secret Key (sk): (s)𝝈A
Sampler

𝞇A

PRNG
𝝈S

Sampler
𝞇S

x

s

PRNG
𝝈E

Sampler
𝞇E

e

+ t = a.s + e
(LWE Instance)

Polynomial multiplication is done

using Number Theoretic Transform (NTT)

.

FIA on KeyGen: Reduce Entropy of Secret [RYB+23]

35
[RYB+23] Ravi, Prasanna, Bolin Yang, Shivam Bhasin, Fan Zhang, and Anupam Chattopadhyay. "Fiddling the Twiddle Constants-Fault Injection Analysis

of the Number Theoretic Transform." IACR Transactions on Cryptographic Hardware and Embedded Systems (2023): 447-481.

PRNG
a

Public Key (pk): (a,t)

Secret Key (sk): (s)𝝈A
Sampler

𝞇A

PRNG
𝝈S

Sampler
𝞇S

x

s

PRNG
𝝈E

Sampler
𝞇E

e

+ t = a.s + e
(LWE Instance)

Polynomial multiplication is done

using Number Theoretic Transform (NTT)

a
NTT

s
NTT

a’

s’
a.sNTT-

1

[RYB+22] Ravi, Prasanna, Bolin Yang, Shivam Bhasin, Fan Zhang, and Anupam Chattopadhyay. "Fiddling the Twiddle Constants-Fault Injection Analysis of

the Number Theoretic Transform." IACR Transactions on Cryptographic Hardware and Embedded Systems (2023): 447-481.

FIA on KeyGen: Reduce Entropy of Secret [RYB+23]

[RYB+22] Ravi, Prasanna, Bolin Yang, Shivam Bhasin, Fan Zhang, and Anupam Chattopadhyay. "Fiddling the Twiddle Constants-Fault Injection Analysis of

the Number Theoretic Transform." IACR Transactions on Cryptographic Hardware and Embedded Systems (2023): 447-481.

FIA on KeyGen: Reduce Entropy of Secret [RYB+23]

[RYB+22] Ravi, Prasanna, Bolin Yang, Shivam Bhasin, Fan Zhang, and Anupam Chattopadhyay. "Fiddling the Twiddle Constants-Fault Injection Analysis of

the Number Theoretic Transform." IACR Transactions on Cryptographic Hardware and Embedded Systems (2023): 447-481.

FIA on KeyGen: Reduce Entropy of Secret [RYB+23]

In MCU, Twiddle Constants are stored
in Flash Memory as part of Firmware

Binary

[RYB+22] Ravi, Prasanna, Bolin Yang, Shivam Bhasin, Fan Zhang, and Anupam Chattopadhyay. "Fiddling the Twiddle Constants-Fault Injection Analysis of

the Number Theoretic Transform." IACR Transactions on Cryptographic Hardware and Embedded Systems (2023): 447-481.

FIA on KeyGen: Reduce Entropy of Secret [RYB+23]

In MCU, Twiddle Constants are stored
in Flash Memory as part of Firmware

Binary

Flash Memory

Twiddle Factor
Array

Tw_Addr
CPUTw_Addr

[RYB+22] Ravi, Prasanna, Bolin Yang, Shivam Bhasin, Fan Zhang, and Anupam Chattopadhyay. "Fiddling the Twiddle Constants-Fault Injection Analysis of

the Number Theoretic Transform." IACR Transactions on Cryptographic Hardware and Embedded Systems (2023): 447-481.

FIA on KeyGen: Reduce Entropy of Secret [RYB+23]

In MCU, Twiddle Constants are stored
in Flash Memory as part of Firmware

Binary

Flash Memory

Twiddle Factor
Array

Tw_Addr
CPU1. Fetch

Tw_Addr
Tw_Addr

[RYB+22] Ravi, Prasanna, Bolin Yang, Shivam Bhasin, Fan Zhang, and Anupam Chattopadhyay. "Fiddling the Twiddle Constants-Fault Injection Analysis of

the Number Theoretic Transform." IACR Transactions on Cryptographic Hardware and Embedded Systems (2023): 447-481.

FIA on KeyGen: Reduce Entropy of Secret [RYB+23]

In MCU, Twiddle Constants are stored
in Flash Memory as part of Firmware

Binary

Flash Memory

Twiddle Factor
Array

Tw_Addr
CPU1. Fetch

Tw_Addr 2. Fetch from
(Tw_Addr + j)

For jth twiddle factor

Tw_Addr

[RYB+22] Ravi, Prasanna, Bolin Yang, Shivam Bhasin, Fan Zhang, and Anupam Chattopadhyay. "Fiddling the Twiddle Constants-Fault Injection Analysis of

the Number Theoretic Transform." IACR Transactions on Cryptographic Hardware and Embedded Systems (2023): 447-481.

FIA on KeyGen: Reduce Entropy of Secret [RYB+23]

In MCU, Twiddle Constants are stored
in Flash Memory as part of Firmware

Binary

Flash Memory

Twiddle Factor
Array

Tw_Addr
CPU1. Fetch

Tw_Addr 2. Fetch from
(Tw_Addr + j)

For jth twiddle factor

Main Observation: Tw_Addr is used as base-address to calculate

address for all constants

Fault Vulnerability: Can an attacker fault the base address?

Tw_Addr

[RYB+22] Ravi, Prasanna, Bolin Yang, Shivam Bhasin, Fan Zhang, and Anupam Chattopadhyay. "Fiddling the Twiddle Constants-Fault Injection Analysis of

the Number Theoretic Transform." IACR Transactions on Cryptographic Hardware and Embedded Systems (2023): 447-481.

FIA on KeyGen: Reduce Entropy of Secret [RYB+23]

In MCU, Twiddle Constants are stored
in Flash Memory as part of Firmware

Binary

Flash Memory

Twiddle Factor
Array

Tw_Addr
CPU1. Fetch

Tw_Addr 2. Fetch from
(Tw_Addr + j)

For jth twiddle factor

Main Observation: Tw_Addr is used as base-address to calculate

address for all constants

Fault Vulnerability: Can an attacker fault the base address?

Tw_Addr

Implementation Style used in all publicly available optimized

implementations of Kyber and Dilithium for ARM Cortex-M4 Processor

FIA on KeyGen: Reduce Entropy of Secret [RYB+23]

37
[RYB+22] Ravi, Prasanna, Bolin Yang, Shivam Bhasin, Fan Zhang, and Anupam Chattopadhyay. "Fiddling the Twiddle Constants-Fault Injection Analysis of

the Number Theoretic Transform." IACR Transactions on Cryptographic Hardware and Embedded Systems (2023): 447-481.

Flash Memory

Twiddle Factor
Array

Tw_Addr
CPU1. Fetch

Tw_Addr* 2. Fetch
(Tw_Addr* + j)

For jth twiddle factor

Observation: Can zeroize the entire twiddle factor array in a single fault

25% of random memory locations yield zeros on ARM Cortex-M4 processor

What happens when twiddle factors are zeroized???

Tw_Addr

0000..

Tw_Addr*

In MCU, Twiddle Constants are stored
in Flash Memory as part of Firmware

Binary

.a
NTT

s
NTT

a’

NTT-

1

NTT Fault Vulnerability: Zeroization of Twiddle Constants

.a
NTT

s
NTT

a’

NTT-

1

NTT Fault Vulnerability: Zeroization of Twiddle Constants

Entropy reduces by half in every NTT layer

.a
NTT

s
NTT

a’

NTT-

1

NTT Fault Vulnerability: Zeroization of Twiddle Constants

Entropy reduces by half in every NTT layer

.a
NTT

s
NTT

a’

NTT(s*)

NTT-

1

NTT Fault Vulnerability: Zeroization of Twiddle Constants

Entropy reduces by half in every NTT layer

.a
NTT

s
NTT

a’

NTT(s*)
a . s*NTT-

1

NTT Fault Vulnerability: Zeroization of Twiddle Constants

Entropy reduces by half in every NTT layer

.a
NTT

s
NTT

a’

NTT(s*)
a . s*NTT-

1

Faulty secret s*

NTT Fault Vulnerability: Zeroization of Twiddle Constants

Entropy reduces by half in every NTT layer

.a
NTT

s
NTT

a’

NTT(s*)
a . s*NTT-

1

Faulty secret s*

NTT Fault Vulnerability: Zeroization of Twiddle Constants

Valid Secret, but with
Low Entropy

Entropy reduces by half in every NTT layer

.a
NTT

s
NTT

a’

NTT(s*)
a . s*NTT-

1

Faulty secret s*

❑ Kyber uses Incomplete NTT

❑ 7 layers (256 point NTT)

❑ Two non zero coeff. at NTT output

❑ Dilithium uses complete NTT

❑ 8 layers (256 point NTT)

❑ One non-zero coeff. At NTT output

NTT Fault Vulnerability: Zeroization of Twiddle Constants

Valid Secret, but with
Low Entropy

Entropy reduces by half in every NTT layer

.a
NTT

s
NTT

a’

NTT(s*)
a . s*NTT-

1

Faulty secret s*

❑ Kyber uses Incomplete NTT

❑ 7 layers (256 point NTT)

❑ Two non zero coeff. at NTT output

❑ Dilithium uses complete NTT

❑ 8 layers (256 point NTT)

❑ One non-zero coeff. At NTT output

❑ Secret s has k polynomials

❑ k NTTs

❑ But, we experimentally observed that

fault on one NTT is sufficient

❑ Maybe faulty twiddle pointer is cached

and reused for k NTTs

NTT Fault Vulnerability: Zeroization of Twiddle Constants

Valid Secret, but with
Low Entropy

Entropy reduces by half in every NTT layer

PRNG
a

Public Key (pk): (a,t)

Secret Key (sk): (s*)𝝈A
Sampler

𝞇A

PRNG
𝝈S

Sampler
𝞇S

x

s
e

+ t* = a.s* + e
s*

FIA on Kyber KeyGen: Zeroization of Twiddle Constants

PRNG
a

Public Key (pk): (a,t)

Secret Key (sk): (s*)𝝈A
Sampler

𝞇A

PRNG
𝝈S

Sampler
𝞇S

x

s
e

+ t* = a.s* + e
s*

Valid (pk,sk)

• Same Secret (s*) in NTT domain is used for Decaps
• To avoid extra NTT/INTT conversions

• Originally sampled secret s is forgotten!!!

• Memoryless property of Kyber

• Attack also applies to masked implementations

• Repeat Same Fault on All Shares (Experimentally verified)

FIA on Kyber KeyGen: Zeroization of Twiddle Constants

PRNG
a

Public Key (pk): (a,t)

Secret Key (sk): (s*)𝝈A
Sampler

𝞇A

PRNG
𝝈S

Sampler
𝞇S

x

s
e

+ t* = a.s* + e
s*

Valid (pk,sk)

• Same Secret (s*) in NTT domain is used for Decaps
• To avoid extra NTT/INTT conversions

• Originally sampled secret s is forgotten!!!

• Memoryless property of Kyber

• Attack also applies to masked implementations

• Repeat Same Fault on All Shares (Experimentally verified)

FIA on Kyber KeyGen: Zeroization of Twiddle Constants

PRNG
a

Public Key (pk): (a,t)

Secret Key (sk): (s*)𝝈A
Sampler

𝞇A

PRNG
𝝈S

Sampler
𝞇S

x

s
e

+ t* = a.s* + e
s*

Valid (pk,sk)

• Same Secret (s*) in NTT domain is used for Decaps
• To avoid extra NTT/INTT conversions

• Originally sampled secret s is forgotten!!!

• Memoryless property of Kyber

• Attack also applies to masked implementations

• Repeat Same Fault on All Shares (Experimentally verified)

FIA on Kyber KeyGen: Zeroization of Twiddle Constants

Countermeasure: Sanity Check on
Twiddle Constants or NTT outputs

Table of Contents
1. Introduction to Fault Attacks
2. Persistent Fault Analysis (PFA)
3. PFA on Higher-Order Masking
4. Fault Attack on Lattice based PQC
5. Conclusions

41

Conclusions
• Faults attack are a powerful attack vector
• With good control over setup, even a single fault can be devastating
• Demonstrated the power in context of block ciphers, protection mechanisms,

PQC etc
• A study of fault injection capabilities and fault analysis must go hand in hand
• A lot is still left to explore
• Are we moving towards formal analysis of security analysis against fault

attacks and combined attacks?

42

Thank You !!!

43

