
1

Fault Tolerance of Encrypted Memory:
Crash Consistency Problem and Secure Recovery

Rei Ueno
Kyoto University, Japan

This talk is based on collaborative works with Maya Oda, Hiromichi Haneda,
Naofumi Homma (Tohoku University) and Akiko Inoue, Kazuhiko Minematsu (NEC)

Twentyfirst Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC)

September 4th, 2024

2

Modern computers and memory
• Modern CPUs operate with high frequency (~6 GHz), while memory

access speed is relatively low and can be performance bottleneck
• Cache memories on-chip decrease

frequency of main memory accesses
• Memory access speed and capacity

are tradeoff
• Off-chip memory is essential to handle

practical amount of data

• Off-chip memory is subject to eaves-
dropping and manipulation
• Motivation of memory encryption

Register

L1 cache

L2 cache

LLC

Main memory
(e.g., DRAM)

Storage
(e.g., HDD, SSD)

Access
speed Capacity

Memory hierarchy

Large

Small

Low

High

Main memory

Last Level Cache (LLC)

CPU
core 1

Memory controller

Processing
unit

L1 cache

L2 cache

CPU
core 2

CPU
core n

On-chip

Off-chip

Typical system model of
modern computers

3

Cold boot attack [HSH+09]
• Main memory, typically DRAM, holds data by capacitor charge
• Memory data remains for a time but is not erased immediately after powered-off
• Cooling DRAM makes the data remaining time longer

• Memory data can be eavesdropped by dumping it after removing
• Allows for bypassing storage encryption to retrieve confidential data
• Successful key recovery of RSA, AES, lattice-based crypto, etc. has been reported

[HSH+09] J. A. Halderman et al., “Lest we remember: cold-boot attacks on encryption keys,” Communication of the ACM, vol. 52, pp. 91–98,
2009. Figures are from the article.

Time elapse of powered-off DRAM data
Time Experiment of cooling and removing DRAM module

4

Threats on memory data integrity
• Rowhammer [KDK+14]
• Incur bit flips without accessing themselves
• High-frequent access to aggressor affects

electrical charges of capacitors in neighbor rows
• Performed remotely, resulting in some serious vulnerability

• Soft-error
• Bits in DRAM and SRAM are sometimes flipped accidentally
• Because of cosmic rays reaching earth surface, noise,

and unexpectedly large leak of electrical charge, etc.
• More serious for large memory and cutting-edge technologies

• And other threats, such as abuse of privilege, compromised
OS/hypervisor, microarchitectural side-channel attacks, etc.

Aggressor row

Victim row

Victim row
Repeated access
with high frequency

DRAM memory

Inverter ring in SRAM

Cosmic ray
0→1

1→0

[KDK+14] Y. Kim et al., “Flipping bits in memory without accessing them,” ISCA, 2014.

5

Non-volatile memory (NVM) for main memory
• NV main memory contributes to high performance and low energy CPU

• Intel Optane Persistent Memory, NVDIMM, etc.

• Actively researched in microarchitectural field (e.g., MICRO, ISCA, HPCA)
• Eavesdropping and manipulation are more severe and practical for NVM

• Intel Optane Persistent Memory utilizes AES–XTS engine for confidentiality

Overview of Intel Optane Persistent Memory
https://www.intel.co.jp/content/www/jp/ja/products/docs/memory-storage/optane-persistent-memory/optane-persistent-memory-200-series-brief.html

https://www.intel.co.jp/content/www/jp/ja/products/docs/memory-storage/optane-persistent-memory/optane-persistent-memory-200-series-brief.html

6

Security levels of memory encryption
• Memory encryption can be classified into three levels [AMS+22]
• Major goals are confidentiality, authenticity, and resistance to replay attacks
• Replay attack prevention needs special care specific to memory encryption

[AMS+22] R. Avanzi et al., “SoK: Hardware-Supported Cryptographic Protection of Random Access Memory,” IACR ePrint Archives, 2022/1472

Level 1 (L1) Level 2 (L2) Level 3 (L3)

Goals Confidentiality Confidentiality
Integrity

Confidentiality
Integrity

Replay protection

Major
primitives Encryption Encryption

(Nonce-based) MAC/AE

Encryption
Nonce-based MAC/AE

Memory authentication tree

Examples AES–XTS for storage
encryption and Intel Optane Intel TDX, ARM SEV Intel SGX

7

Dilemma between authenticity and availability
• Computer systems sometimes crash
• Sudden power-off, blackout, fluctuation of power supply, etc.

• Bits in memory (DRAM, SRAM, and NVM) are sometimes flipped
• Server-grade memory uses ECC (Single Error Correction and Double Error Detection)
• Consumer-grade ones (e.g., laptop and smartphone) do not

• MAC/AE detects even one-bit modification for simple security goal
• If bits are accidentally or maliciously flipped, whole memory data gets unavailable
• Memory encryption degrades data availability against soft-errors and DoS-like attacks
• Users and vendors would be very sensitive to data availability

• Level 4 (L4): Memory recoverability against errors and system crashes
in addition to confidentiality, authenticity, and resilience to replay attacks

8

This talk
• Overview and basics of memory encryption
• Threat and system models, major cryptographic primitives, hardware architecture
• Focus on L3-secure memory encryption

• Fault tolerance/crash consistency problem of encrypted memory
• Consider malicious manipulation, soft-errors, and system crashes
• Secure recovery is non-trivial problem

• Crystalor: State-of-the-art L4-secure memory encryption mechanism
[UHH+24]

• Almost no latency overhead recovery mechanism in CPU performance
based on tailor-made primitive
• Offer fast recovery after error detection or system crash

[UHH+24] R. Ueno, H. Haneda, N. Homma, A. Inoue, K. Minematsu, “Crystalor: Recoverable memory encryption mechanism with
Optimized Metadata Structure,” ACM CCS, 2024. (to appear)

9

Talk outline

• Background

• Overview and basics of memory encryption

• Crash consistency problem

• Crash recovery mechanisms for encrypted memory

• Concluding remarks

10

Threat and system models of memory encryption
• System is divided into on-chip trusted and off-chip untrusted areas
• Attacker can neither eavesdrop nor manipulate on-chip data
• Do not consider on-chip side-channel attacks (protected by different means)
• Limited capacity of memory (NVM), basically just for secret keys and root

• Attacker can perform arbitrary eavesdropping and manipulation on off-chip data
• Subject to confidentiality and authenticity

Typical system model of modern computers Major components related to memory encryption

Main memory

Last Level Cache (LLC)

CPU
core 1

Memory controller

Processing
unit

L1 cache

L2 cache

CPU
core 2

CPU
core n

On-chip

Off-chip

Untrusted area

Trusted area

11

Cryptographic primitives for memory encryption
• Symmetric ciphers are usually used

• On-chip memory encryption engine performs both encryption and decryption
when writing and reading data to/from memory, respectively
• No need of key exchange, and the secret key never exposes outside chip

• Confidentiality and authenticity for memory data
• Nonce-based message authentication code (MAC) and authenticated encryption (AE)

MAC

N M

K

T

AE.Enc

N M

K

TC

AE.Dec

N C

K

TM

K: Secret key, N: Nonce, M: Message/Plaintext, C: Encrypted data/Ciphertext, T: Tag

12

Memory encryption for integrity: Attempt 1/3
• Simple calculation of one MAC tag for full memory data
• Need access to full domain of the memory (GB or TB order)
• Impossible to compute the tag in real-time during nominal operation

T

Untrusted off-chip memoryTrusted on-chip area

T =
MACK(M[1], ..., M[n], N)

N

Security Level 3

Computational cost
at one store/read O(n)

On-chip memory O(1)

Off-chip memory No overhead

M[1]
M[2]
M[3]
M[4]

...

M[n]

13

Memory encryption for integrity: Attempt 2/3
• Calculate MAC tag for each data block
• Need on-chip NVM for storing tags and nonces as large as off-chip memory
• On-chip memory is limited, and storing large contents on-chip is meaningless

Untrusted off-chip memoryTrusted on-chip area

M[1]

T[i] = MACK(M[i], N[i])
N[1] Security Level 3

Computational cost
at one store/read O(1)

On-chip memory O(n)

Off-chip memory No overhead

T[1]
M[2]N[2]T[2]
M[3]N[3]T[3]
M[4]N[4]T[4]

.........

M[n]N[n]T[n]

14

Memory encryption for integrity: Attempt 3/3
• Store pair of nonce and computed tag on-chip (L2 scheme)
• Cannot prevent replay attacks
• Verification of any memory data should use root-of-trust tag/nonce on-chip

Untrusted off-chip memoryTrusted on-chip area

T[i] = MACK(M[i], N[i])
M[1] N[1]T[1]
M[2] N[2]T[2]
M[3] N[3]T[3]
M[4] N[4]T[4]

...

M[n] N[n]T[n]

(Secret key only)

Security Level 2 (Vulnerable to
replay attacks)

Computational cost
at one store/read O(1)

On-chip memory O(1)
Secret key only

Off-chip memory O(n)

15

Practical solution: Memory authentication tree
• Realize real-time encryption/decryption and authentication
• When accessing an address, verify only its related tags

• Realize replay attack protection with fixed on-chip memory overhead

M[1]
M[2]
M[3]
M[4]

...

M[n]

Security Level 3

Computational cost
at one store/read O(bd) = O(d logdn)

On-chip memory O(1)

Off-chip memory O(bd-1)

T[1]

T[2]

N[1]

N[2]

...
T[i]
N[i]

T[i+1]

T[j]

N[i+1]

N[j]

......Troot
Nroot

Untrusted off-chip memoryTrusted
on-chip area

d: tree depth，b: tree arity

16

Practical solution: Memory authentication tree
• Realize real-time encryption/decryption and authentication
• When accessing an address, verify only its related tags

• Realize replay attack protection with fixed on-chip memory overhead

M[1]
M[2]
M[3]
M[4]

...

M[n]

Security Level 3

Computational cost
at one store/read O(bd) = O(d logdn)

On-chip memory O(1)

Off-chip memory O(bd-1)

T[1]

T[2]

N[1]

N[2]

...
T[i]
N[i]

T[i+1]

T[j]

N[i+1]

N[j]

......Troot
Nroot

Untrusted off-chip memoryTrusted
on-chip area

d: tree depth，b: tree arity

17

Merkle tree (MT)
• First and most major authentication tree construction
• Frequently used in cryptography (e.g., hash-based signature)
• Parent node verifies children’s tag and root tag is securely stored on-chip
• HMAC–SHA1/2/3 and AES–CTR are commonly used

C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8]

Hash Hash Hash Hash

T[9] T[10] T[11] T[12]

Hash Hash

T[13] T[14]

Hash

TR

Untrusted off-chip memory

Trusted on-chip area

18

Merkle tree (MT)
• First and most major authentication tree construction
• Frequently used in cryptography (e.g., hash-based signature)
• Parent node verifies children’s tag and root tag is securely stored on-chip
• HMAC–SHA1/2/3 and AES–CTR are commonly used

C[1] C[2] C[4] C[5] C[6] C[7] C[8]

Hash Hash Hash Hash

T[9] T[10] T[11] T[12]

Hash Hash

T[13] T[14]

Hash

TR

Untrusted off-chip memory

Trusted on-chip area

C[3]

19

Merkle tree (MT)
• First and most major authentication tree construction
• Frequently used in cryptography (e.g., hash-based signature)
• Parent node verifies children’s tag and root tag is securely stored on-chip
• HMAC–SHA1/2/3 and AES–CTR are commonly used

C[1] C[2] C[4] C[5] C[6] C[7] C[8]

Hash Hash Hash Hash

T[9] T[10] T[11] T[12]

Hash Hash

T[13] T[14]

Hash

TR

Untrusted off-chip memory

Trusted on-chip area

C[3]

Update is not parallelizable
(Tags on path should be

calculated in bottom-up manner)

20

Parallelizable authentication tree (PAT)
• Parent nodes verifies children’s nonces instead of tags
• Update is parallelizable, because new nonce is generated without children’s data

N[1] N[2] N[3] N[4] N[5] N[6] N[7] N[8]

MAC MAC MAC MAC

T[9]

MAC MAC

MAC

Untrusted off-chip memory

Trusted on-chip area

Leaf nodes are encrypted using
AE and contain ciphertext, tag,

and nonce (counter)

N[9] T[10] N[10] T[11] N[11] T[12] N[12]

T[13] N[13] T[13] N[13]

NR

TR

C[1], T[1] C[2], T[2] C[3], T[4] C[4], T[4] C[5], T[5] C[6], T[6] C[7], T[7] C[8], T[8]

21

Parallelizable authentication tree (PAT)
• Parent nodes verifies children’s nonces instead of tags
• Update is parallelizable, because new nonce is generated without children’s data

N[1] N[2] N[3] N[4] N[5] N[6] N[7] N[8]

MAC MAC MAC MAC

T[9]

MAC MAC

MAC

Untrusted off-chip memory

Trusted on-chip area

N[9] T[10] N[10] T[11] N[11] T[12] N[12]

T[13] N[13] T[13] N[13]

NR

TR

C[1], T[1] C[2], T[2] C[3], T[4] C[4], T[4] C[5], T[5] C[6], T[6] C[7], T[7] C[8], T[8]

Nonce is generated from
previous nonce value, yielding
parallelizability of path update

22

Comparison of MT and PAT in memory encryption
• MT has critical drawback of non-parallelizability of path update

• Non-negligible latency overhead of write to memory
• More critical when deeper tree for protecting large memory

• PAT has algorithmically lower latency than MT, yielding higher performance
• Promising for memory encryption, if we can realize fault tolerance with low cost

MT PAT

Verification
(Read from memory) Parallelizable Parallelizable

Update
(Write to memory) Not parallelizable Parallelizable

Fault tolerance Relatively easy Non-trivial

23

PAT instance 1: Intel SGX Integrity Tree (SIT) [Gue16]
• Major memory encryption scheme based on PAT
• Studied also in microarchitecture conferences
• Generic composition of AES–CTR and Wegman–Carter MAC with 56-bit tag
• Security reduction to AES-128
• The MAC uses universal hash over GF(264)
• Authenticate 512-bit data using 512-bit key
• Sum of [64-bit data chunk]×[64-bit key chunk]

(i.e., inner-product over GF(264))
• Information-theoretical security

• Specialized to protect 128 MB region
• But difficult in scaling to larger region

[Gue16] S. Gueron, “A Memory Encryption Engine Suitable for General Purpose
Processors,” IACR ePrint Archive, 2016/204. Figure is from the paper. Wegman–Carter MAC in SIT

24

PAT instance 2: Encryption for Large Memory (ELM) [IMO+22]

• Develop AE and MAC specialized to PAT-based memory encryption
• PXOR–MAC: Optimized PMAC with block cipher (BC) depth 1
• Flat-OCB (AE): Optimized OCB with lowest BC depths in both enc. and dec.

• Especially efficient in protecting larger region
• Rate-1, parallelizability, and minimum

depth achieve optimal AE/MAC latency
• Required on-chip NVM size is fixed

in contrast to SIT
• PXOR–MAC offers incremental update
• Further efficient memory write

[IMO+22] A. Inoue, K. Minematsu, M. Oda, R. Ueno, N. Homma, “ELM: A Low-Latency and Scalable Memory Encryption Scheme,”
IEEE Transactions on Information Forensics and Security, 17, pp. 2628–2643, 2022.

0128

1K'

M[1]

... T

L

EK

2K'

EK

M[2]

nK'

EK

M[n]

nK'

EK

N

PXOR–MAC

25

Talk outline

• Background

• Overview of memory encryption

• Crash consistency problem

• Crash recovery mechanisms for encrypted memory

• Concluding remarks

26

Crash consistency and data persistency
• Crash includes sudden power-off/blackout, fluctuation of power supply, etc.
• Need to persist data to be written to main memory
• Asynchronous DRAM refresh (ADR) domain
• Data reached here is guaranteed to be written to memory
• Some CPUs utilize write pending queue (WPQ) in memory

controller as ADR
• At cache miss or some instructions like CLFLUSH and

CLWB, cache data should reach to ADR for its persistency
(for write-back policy)
• Need some care to avoid persistency bugs

(especially for write-through policy)
Main memory

Last Level Cache (LLC)

CPU
core 1

Memory controller

Processing
unit

L1 cache

L2 cache

CPU
core 2

CPU
core n

On-chip

Off-chip

Include WPQ
as ADR

System model of modern computers

27

Crash consistency of encrypted memory
• At memory write, path is updated serially due to limited bandwidth
• Although PAT path update is parallelizable in principle
• Timing when some nodes are updated but others are not must exist
• If verification of a node fails, related data get unavailable as it may be attacked

N[1] N[2] N[3] N[4] N[5] N[6] N[7] N[8]

MAC MAC MAC MAC

T[9]

MAC MAC

MAC

Untrusted off-chip memory

Trusted on-chip area

N[9] T[10] N[10] T[11] N[11] T[12] N[12]

T[13] N[13] T[13] N[13]

NR

TR

C[1], T[1] C[2], T[2] C[3], T[4] C[4], T[4] C[5], T[5] C[6], T[6] C[7], T[7] C[8], T[8]

28

Crash consistency of encrypted memory
• At memory write, path is updated serially due to limited bandwidth
• Although PAT path update is parallelizable in principle
• Timing when some nodes are updated but others do not must exist
• If verification of a node fails, related data get unavailable as it may be attacked

N[1] N[2] N[3] N[4] N[5] N[6] N[7] N[8]

MAC MAC MAC MAC

T[9]

MAC MAC

MAC

Untrusted off-chip memory

Trusted on-chip area

If crash occurs during path update,
nonces get inconsistent and
verification at reboot fails

(We need to verify tree at reboot)

N[9] T[10] N[10] T[11] N[11] T[12] N[12]

T[13] N[13] T[13] N[13]

NR

TR

C[1], T[1] C[2], T[2] C[3], T[4] C[4], T[4] C[5], T[5] C[6], T[6] C[7], T[7] C[8], T[8]

Not yet
updated

Updated

29

Errors in encrypted memory
• Security metadata for PAT (intermediate nodes) are also subject to errors
• Even one-bit error results in verification error, rendering related data unavailable

• Memory encryption renders memory fault tolerance very difficult

N[1] N[2] N[3] N[4] N[5] N[6] N[7] N[8]

MAC MAC MAC MAC

T[9]

MAC MAC

MAC

Untrusted off-chip memory

Trusted on-chip area

N[9] T[10] N[10] T[11] N[11] T[12] N[12]

T[13] N[13] T[13] N[13]

NR

TR

C[1], T[1] C[2], T[2] C[3], T[4] C[4], T[4] C[5], T[5] C[6], T[6] C[7], T[7] C[8], T[8]

Verification failure
due to error

Considered suspect
to be attacked

30

Existing crash consistency mechanism 1/2: Anubis [ZA19]
• Store information on nodes to be updated in Shadow Table (ST) at memory
• At crash, recover the nonces and tags according to ST
• Offer lazy recovery, yielding very fast recover
• Anubis can guarantee integrity without full

verification of whole memory data

• Need non-negligible latency overhead
• ST forms MT, PAT is unavailable for ST

to resolve PAT’s problem
• Contaminate PAT’s advantage
• Degrade CPU performance non-negligibly

(yet most efficient when its publication)
Overview of Anubis

Bottleneck

On-chip

Off-chip

[ZA19] K.A. Zubair, A. Award, “Anubis: ultra low-latency overhead and recovery time for non-volatile memories,” ISCA, 2019.

31

Existing crash consistency mechanism 2/2: SCUE [HH23]

• Assume that nonce is given by upcounter, representing # updates of node
• # Parent node updates equal to sum of # children nodes updates
• Use distinct root nonce to recovery, representing sum of leaf counters
• At crash or verification error, recover from leaves to upper nodes

N’R = N[1] + N[2] + ... + N[8]

N[13] = N[11] + N[12]

N[1] N[2] N[3] N[4] N[5] N[6] N[7] N[8]

MAC MAC MAC MAC

T[9]

MAC MAC

MAC

Untrusted off-chip memory

Trusted on-chip area

N[9] T[10] N[10] T[11] N[11] T[12] N[12]

T[13] N[13] T[13] N[13]

NR

TR

C[1], T[1] C[2], T[2] C[3], T[4] C[4], T[4] C[5], T[5] C[6], T[6] C[7], T[7] C[8], T[8]

[HH23] J. Huang, Y Hua, “Root Crash Consistency of SGX-style Integrity Trees in Secure Non-Volatile Memory Systems,” HPCA, 2023.

N[12] = N[7] + N[8]

32

Drawback and limitation of SCUE
• Nonces should be realized by just simple upcounter for SCUE adoption
• In practice, optimization to compress tree is adopted, e.g. Split Counter (SC)
• Major tree-structural optimization mechanism to compress security metadata [YEP+06]

• Shares upper bits of counters by multiple nodes
• Yield significant reduction of memory overhead, saving bandwidth and latency

• SCUE is not applicable to SC-based PAT, which is significant disadvantage

N[1] N[2] N[3] N[4] N[5] N[6] N7] N[8]

64-bit 64-bit 64-bit 64-bit 64-bit 64-bit 64-bit 64-bit Nonces of 8 nodes
are 512 bits in total

Plain nonce counter: i-th node counter is simply given by 64-bit N[i]

NMajor N[7] N[8]

56-bit 8-bit Only 120 bits
for 8 nodes

Split counter (SC): Nodes share upper bits of nonce counters, where i-th nonce is given by (Nmajor∥ N[i])
N[6]N[5]N[4]N[3]N[2]N[1]

8-bit8-bit8-bit8-bit8-bit8-bit8-bit

[YEP+06], C. Yan et al., “Improving Cost, Performance, and Security of Memory Encryption and Authentication,” ISCA, 2006.

33

Our solution: Crystalor [UHH+24]

• Achieve L4-security (i.e., recoverability of L3-secure PAT) with almost no
latency overhead during operation of the CPU
• Applicable to any PATs with almost no overhead, independently of its

data/nonce structure

[UHH+24] R. Ueno, H. Haneda, N. Homma, A. Inoue, K. Minematsu, “Crystalor: Recoverable memory encryption mechanism with
Optimized Metadata Structure,” ACM CCS, 2024. (to appear)

34

Key concepts of Crystalor
• Adopt on-chip leaf tag, which is verified only upon crash/error detection

• Verify only leaf nodes at reboot, and newly create intermediate nodes of tree
• Remove necessity of path consistency during update, which is hard to realize

• Sufficient to verify at crash/error; verification does not need real-time processing

• Leaf tag update should be real-time
• How can we achieve it?

Consider its mandatory properties
and new cryptographic primitive!

[UHH+24] R. Ueno, H. Haneda, N. Homma, A. Inoue, K. Minematsu, “Crystalor: Recoverable memory encryption mechanism with
Optimized Metadata Structure,” ACM CCS, 2024. (to appear)

35

Incremental cryptography [BGG+95]

• Incremental MAC can update tag with fixed number of BC calls,
independently of original message length
• If old tag, data, and nonces are available, new tag is calculated by a few BC calls
• It is always true for the usage of leaf tag update

M[1]
M[2]
M[3]
M[4]

...

M[n]

Before update

M[1]
M’[2]
M[3]
M[4]

...

M[n]

After update

Tag generation
and verification O(n)

Non-incremental
update O(n)

Incremental update O(1)

Number of BC calls

[BGG+95] M. Bellare, O. Goldreich, S. Goldwasser, “Incremental cryptography and application to virus protection,” STOC, 1995.

Told Tnew

36

PXOR–Hash: Specialized primitive for leaf tag
• Leaf tag is stored on-chip, meaning attacker can neither eavesdrop nor

manipulate the leaf tag
• Full-fledged MAC works, but may achieve stronger security goal than required
• Do not need to consider adversaries seeing its output to find collision

• Almost (XOR-)universal (A(X)U) function is sufficient for secure leaf tag
• Realized using key-dependency more efficiently than MAC and one-way hash

• Our proposal: PXOR–Hash
• Similar to PXOR–MAC and PMAC
• Rete-1 (Efficient recovery)
• Incremental update (Realtime comput.)
• Sufficient security (Attacker cannot

find collision in the scenario)
0128

1K'

M[1]

... Leaf Tag

EK

2K'

EK

M[2]

nK'

EK

M[n]

PXOR–Hash

37

Incremental update of PXOR–Hash
• Consider update of i-th block M[i]
• Given old tag Told and old data block Mold[i],

Tnew is computed with only two EK calls
• Old tag and data are always available because

they must be on-chip at timing of write

• Comparison of major incremental primitives

Told

iK'

Mold[i]

EK

iK'

EK

Mnew[i]

Incremental update of PXOR–Hash
Tnew

PXOR–Hash PXOR–MAC PMAC

Incremental update
(Memory write)

EK calls: 2
Depth: 1

EK calls: 4
Depth: 1

EK calls: 4
Depth: 2

Tag generation
(Recovery)

EK calls: n
Depth: 1

EK calls: n + 1
Depth: 1

EK calls: n + 2
Depth: 2

Inverse-freeness Yes Yes No (Need EK
-1)

38

Hardware architecture and implementation
• Add PXOR–Hash hardware to existing memory encryption engine
• Crystalor and memory encryption engine distinctly operate
• Compatible with most existing processor architecture and optimization mechanisms

• Leaf tag is computed on-chip
• Never expose outside
• Secure and fast computation

• No latency overhead as it is
faster than PAT
• Only 384-bit on-chip NVM

• Use WPQ as ADR domain
• Used for consistent update

of leaf tag and leaf nodes
Proposed hardware architecture

39

How Crystalor operates―Store operation
1. Store operation is issued

40

How Crystalor operates―Store operation
1. Store operation is issued
2. Parallel computation of ELM and leaf tag
• Leaf tag input is nonce of the leaf node to be updated
• Raise busy flag (one-bit register)
• AE inputs (i.e., leaf node) should

be preserved in NVM for recovery
from crash during AE computation
• Use ELM hardware (i.e., memory

encryption engine) as ADR

41

How Crystalor operates―Store operation
1. Store operation is issued
2. Parallel computation of ELM and leaf tag
3. Write encrypted leaf nodes to WPQ and update leaf tag
• Persist leaf nodes
• Busy flag is put down

• Leaf tag should be consistently and
simultaneously updated

42

How Crystalor operates―Store operation
1. Store operation is issued
2. Parallel computation of ELM and leaf tag
3. Write encrypted leaf nodes to WPQ and update leaf tag
4. Write leaf and intermediate nodes to NVM
• Persistency of leaf node is guaranteed

because they are in WPQ
• Intermediate nodes are directly

written to NVM without WPQ
• They do not need strong

persistency because they are not
used at recovery

43

How Crystalor operates―Recovery at reboot
1. AE status check
• If busy flag is raised, compute leaf node AE and leaf tag using data preserved in NVM,

and write the result to memory through WPQ and update leaf tag
• Otherwise, we found leaf node and leaf tag are correctly stored (nothing to do)

44

How Crystalor operates―Recovery at reboot
1. AE status check
2. Create new tree from leaf nodes in bottom up manner
• For SC-based PAT, no way to recover intermediate node nonces before crash/error
• Nonces of intermediate nodes are determined such that replay attack is not available
• Use a lower bound for new nonce

[Theorem 1, UHH+24]

45

How Crystalor operates―Recovery at reboot
1. AE status check
2. Create new tree from leaf nodes in bottom up manner
3. Leaf tag verification
• Any manipulation of leaf node except for replay is detected by leaf node AE
• Leaf tag verifies nonces are

not replayed
• Steps 2 and 3 should be performed

in parallel to avoid manipulation
during these steps

46

Algorithmic-level evaluation

• Evaluate latency of write and read
operations for covered region size
• Left: Covered region sizes w/o SC
• Right: Covered region sizes w/ SC

• For example, focus on protection
of 4 TB memory
• d = 5: SC reduces latency by 62%
• d = 7: SC reduces latency by 29%
• SC reduces NVM overhead for

metadata by 44%
• SC’s advantage directly represents

Crystalor’s advantage for L4 security

Tree arity Latency

d: tree depth (# AES encryption
engines available in parallel)

47

System-level simulation
• Evaluate execution times of benchmarking workloads using cycle-accurate

CPU simulator gem5
• Memory size is 4 TB

• Evaluation targets
• Insecure (No memory encryption)
• ELM without SC (L3, Non-recoverable)
• ELM with SC (L3, Non-recoverable)
• ELM–SCUE without SC (L4)
• ELM–Anubis without SC (L4)
• ELM–Crystalor with SC (L4)

48

Simulation result (d = 5): Normalized execution time
• Crystalor achieved at most

11% reduction of exec. time
• Crystalor has almost same

exec. time as L3-secure
ELM with SC
• PXOR–Hash computation

has little impact on time
• Because it is designed to be

far faster than PAT and be
computed in parallel

ELM without SC (Not Recoverable)
ELM with SC (Not Recoverable)

64 Bytes 512 Bytes 1,024 Bytes 4,096 Bytes

ELM–SCUE
ELM–ASIT

ELM–Crystalor

Ex
ec

ut
io

n
Ti

m
e

N
or

m
al

iz
ed

 b
y

In
se

cu
re

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85

HT
BST

RBT
Que

ue HT
BST

RBT
Que

ue HT
BST

RBT
Que

ue HT
BST

RBT
Que

ue

49

Concluding remarks
• Adding fault-tolerance, crash consistency, and recoverability to real-world

cryptographic application is sometimes non-trivial task
• In memory encryption, we needed to address dilemma between authenticity

(security) and availability
• Recent progress of memory encryption deeply solved this dilemma
• Crystalor incurs almost no latency overhead for tree recovery, while it can be

adopted in most existing CPU architectures and optimization mechanisms
• Leaf nodes can be protected by ECC and memory tagging/coloring

• Memory encryption has been mainly studied in microarchitectural domain
• Fewer studies in cryptographic and security research domains, IMO
• Worth studying memory encryption and crash consistency problem from various

perspectives, as they are interdisciplinary topics

50

51

Recovery cost estimation

106

107

108

109

1010

1011

1012

1013

1014

2G 275G 18T 563T 1P

ELM–SCUE
ELM–Crystalor

Covered region size [bits]

C
lo

ck
 c

yc
le

s

108

109

1010

1011

1012

1013

1014

1015

1016

2G 275G 18T 563T 1P
Covered region size [bits]

Tr
an

sm
itt

ed
 b

its

ELM–SCUE
ELM–Crystalor

