

A Single-Trace Fault Injection Attack on Hedged Module Lattice Digital Signature Algorithm (ML-DSA)

Sönke Jendral, John Preuß Mattsson, Elena Dubrova September 4, 2024 — KTH & Ericsson Research

Post-quantum cryptography

- Quantum computing: Shor's algorithm may break public-key cryptography
- Post-quantum cryptography: New algorithms, secure against quantum attacks
- NIST competition: Several algorithms currently being standardised
- Soon widely deployed:
 - 3GPP/IETF are working on integration into 5G and internet standards
 - Required by CNSA 2.0 by 2025
 - Signature algorithms: Firmware signing, PKI
- How can we build secure implementations?
- How are current implementations insecure?

Learning with Errors (LWE) [Reg05]

Given *A* and *t*:

- Search: Find s
- Decision: Is t random?

Hardness: Classically and quantumly NP-hard*

Short Integer Solution (SIS) [MR07]

Given A and β , find z

Hardness: Classically and quantumly NP-hard*

Digital signatures & Fiat-Shamir transform

Digital signatures & Fiat-Shamir transform

- Key generation: Secret $s_1 \in R_q^l$, $s_2 \in R_q^k$, Public $a \in R_q^{k \times l}$ and $t = as_1 + s_2$.
- Signing: Masks $y_1 \in R_q^l$, $y_2 \in R_q^k$ uniformly at random. Commitment $\tilde{c} \leftarrow ay_1 + y_2$, Challenge $c \leftarrow H(\tilde{c}, \mu)$ Responses $z_1 = cs_1 + y_1$ and $z_2 = cs_2 + y_2$. Reject z_1, z_2 if outside safe range and try again.
- Verification: $c' = H(az_1 + z_2 tc, \mu)$. Accept if c' = c and $||z_1||, ||z_2|| \le \gamma$.

- Key generation: Secret $s_1 \in R_q^l$, $s_2 \in R_q^k$, Public $a \in R_q^{k \times l}$ and $t = as_1 + s_2$.
- Signing: Masks $y_1 \in R_q^l$, $y_2 \in R_q^k$ uniformly at random. Commitment $\tilde{c} \leftarrow ay_1 + y_2$, Challenge $c \leftarrow H(\tilde{c}, \mu)$ Responses $z_1 = cs_1 + y_1$ and $z_2 = cs_2 + y_2$. Reject z_1, z_2 if outside safe range and try again.
- Verification: $c' = H(az_1 + z_2 tc, \mu)$. Accept if c' = c and $||z_1||, ||z_2|| \le \gamma$.

- Key generation: Secret $s_1 \in R_q^l$, $s_2 \in R_q^k$, Public $a \in R_q^{k \times l}$ and $t = as_1 + s_2$.
- Signing: Masks $y_1 \in R_q^l$, $y_2 \in R_q^k$ uniformly at random. Commitment $\tilde{c} \leftarrow ay_1 + y_2$, Challenge $c \leftarrow H(\tilde{c}, \mu)$ Responses $z_1 = cs_1 + y_1$ and $z_2 = cs_2 + y_2$. Reject z_1, z_2 if outside safe range and try again. Cannot get s_1 from t (LWE)
- Verification: $c' = H(az_1 + z_2 tc, \mu)$. Accept if c' = c and $||z_1||, ||z_2|| \le \gamma$.

- Key generation: Secret $s_1 \in R_q^l$, $s_2 \in R_q^k$, Public $a \in R_q^{k \times l}$ and $t = as_1 + s_2$.
- Signing: Masks y₁ ∈ R^l_q, y₂ ∈ R^k_q uniformly at random. Commitment č ← ay₁ + y₂, Challenge c ← H(č, μ) Responses z₁ = cs₁ + y₁ and z₂ = cs₂ + y₂. Reject z₁, z₂ if outside safe range and try again.
- Verification: $c' = H(az_1 + z_2 tc, \mu)$. Accept if c' = c and $||z_1||, ||z_2|| \le \gamma$.

- Key generation: Secret $s_1 \in R_q^l$, $s_2 \in R_q^k$, Public $a \in R_q^{k \times l}$ and $t = as_1 + s_2$.
- Signing: Masks $y_1 \in R_q^l$, $y_2 \in R_q^k$ uniformly at random. Commitment $\tilde{c} \leftarrow ay_1 + y_2$, Challenge $c \leftarrow H(\tilde{c}, \mu)$ Responses $z_1 = cs_1 + y_1$ and $z_2 = cs_2 + y_2$. Reject z_1, z_2 if outside safe range and try again.
- Verification: $c' = H(az_1 + z_2 tc, \mu)$. Accept if c' = c and $||z_1||, ||z_2|| \le \gamma$.

- Key generation: Secret $s_1 \in R_q^l$, $s_2 \in R_q^k$, Public $a \in R_q^{k \times l}$ and $t = as_1 + s_2$.
- Signing: Masks $y_1 \in R_q^l$, $y_2 \in R_q^k$ uniformly at random. Commitment $\tilde{c} \leftarrow ay_1 + y_2$, Challenge $c \leftarrow H(\tilde{c}, \mu)$ Responses $z_1 = cs_1 + y_1$ and $z_2 = cs_2 + y_2$. Reject z_1, z_2 if outside safe range and try again.
- Verification: $c' = H(az_1 + z_2 tc, \mu)$. Accept if c' = c and $||z_1||, ||z_2|| \le \gamma$.

- Key generation: Secret $s_1 \in R_q^l$, $s_2 \in R_q^k$, Public $a \in R_q^{k \times l}$ and $t = as_1 + s_2$.
- Signing: Masks y₁ ∈ R^l_q, y₂ ∈ R^k_q uniformly at random. Commitment č ← ay₁ + y₂, Challenge c ← H(č, μ) Responses z₁ = cs₁ + y₁ and z₂ = cs₂ + y₂. ← Cannot get s₁, s₂ from z₁, z₂ (LWE) Reject z₁, z₂ if outside safe range and try again.
- Verification: $c' = H(az_1 + z_2 tc, \mu)$. Accept if c' = c and $||z_1||, ||z_2|| \le \gamma$.

- Key generation: Secret $s_1 \in R_q^l$, $s_2 \in R_q^k$, Public $a \in R_q^{k \times l}$ and $t = as_1 + s_2$.
- Signing: Masks $y_1 \in R_q^l$, $y_2 \in R_q^k$ uniformly at random. Commitment $\tilde{c} \leftarrow ay_1 + y_2$, Challenge $c \leftarrow H(\tilde{c}, \mu)$ Responses $z_1 = cs_1 + y_1$ and $z_2 = cs_2 + y_2$. Reject z_1, z_2 if outside safe range and try again.
- Verification: $c' = H(az_1 + z_2 tc, \mu)$. Accept if c' = c and $||z_1||, ||z_2|| \le \gamma$.

- Key generation: Secret $s_1 \in R_q^l$, $s_2 \in R_q^k$, Public $a \in R_q^{k \times l}$ and $t = as_1 + s_2$.
- Signing: Masks $y_1 \in R_q^l$, $y_2 \in R_q^k$ uniformly at random. Commitment $\tilde{c} \leftarrow ay_1 + y_2$, Challenge $c \leftarrow H(\tilde{c}, \mu)$ Responses $z_1 = cs_1 + y_1$ and $z_2 = cs_2 + y_2$. Reject z_1, z_2 if outside safe range and try again.
- Verification: $c' = H(az_1 + z_2 tc, \mu)$. Accept if c' = c and $||z_1||, ||z_2|| \le \gamma$.

 $az_1 + z_2 - tc = a(cs_1 + y_1) + cs_2 + y_2 - (as_1 + s_2)c = ay_1 + y_2 = \tilde{c}$

S. Jendral et al.

- Key generation: Secret $s_1 \in R_q^l$, $s_2 \in R_q^k$, Public $a \in R_q^{k \times l}$ and $t = as_1 + s_2$.
- Signing: Masks $y_1 \in R_q^l$, $y_2 \in R_q^k$ uniformly at random. Commitment $\tilde{c} \leftarrow ay_1 + y_2$, Challenge $c \leftarrow H(\tilde{c}, \mu)$ Responses $z_1 = cs_1 + y_1$ and $z_2 = cs_2 + y_2$. Reject z_1, z_2 if outside safe range and try again.
- Verification: $c' = H(az_1 + z_2 tc, \mu)$. Accept if c' = c and $||z_1||, ||z_2|| \le \gamma$.

Cannot compute z_1, z_2 without s_1, s_2 (SIS)


```
Input: Private key sk, message M

Output: Signature \sigma

1: (\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0) \leftarrow \text{skDecode}(sk)

2: \mathbf{A} \leftarrow \text{ExpandA}(\rho)

3: \mu \leftarrow \text{H}(tr \parallel M, 512)

4: rnd \leftarrow \{0, 1\}^{256}

5: \rho' \leftarrow \text{H}(K \parallel rnd \parallel \mu, 512)

6: \kappa \leftarrow 0

7: (\mathbf{z}, \mathbf{h}) \leftarrow \bot
```

```
8: while (\mathbf{z}, \mathbf{h}) = \bot \operatorname{do}

9: \mathbf{y} \leftarrow \operatorname{ExpandMask}(\rho', \kappa)

10: \tilde{c} \leftarrow \mathbf{Ay}

11: c \leftarrow \operatorname{H}(\tilde{c} \parallel \mu)

12: \mathbf{z} \leftarrow \mathbf{y} + cs_1

13: \mathbf{if} \parallel \mathbf{z} \parallel_{\infty} \ge \gamma_1 - \beta \operatorname{then} (\mathbf{z}, \mathbf{h}) \leftarrow \bot

14: \sqsubset \kappa \leftarrow \kappa + l

15: \sigma \leftarrow \operatorname{sigEncode}(\tilde{c}, \mathbf{z} \operatorname{mod}^{\pm} q)

16: return \sigma
```



```
Input: Private key sk, message M

Output: Signature \sigma

1: (\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0) \leftarrow \text{skDecode}(sk)

2: \mathbf{A} \leftarrow \text{ExpandA}(\rho)

3: \mu \leftarrow \text{H}(tr \parallel M, 512)

4: rnd \leftarrow \{0, 1\}^{256}

5: \rho' \leftarrow \text{H}(K \parallel rnd \parallel \mu, 512)

6: \kappa \leftarrow 0

7: (\mathbf{z}, \mathbf{h}) \leftarrow \bot
```

```
8: while (\mathbf{z}, \mathbf{h}) = \bot \operatorname{do}

9: \mathbf{y} \leftarrow \operatorname{ExpandMask}(\rho', \kappa)

10: \tilde{c} \leftarrow \mathbf{Ay}

11: c \leftarrow \operatorname{H}(\tilde{c} \parallel \mu)

12: \mathbf{z} \leftarrow \mathbf{y} + cs_1

13: \mathbf{if} \parallel \mathbf{z} \parallel_{\infty} \ge \gamma_1 - \beta then (\mathbf{z}, \mathbf{h}) \leftarrow \bot

14: \bot \kappa \leftarrow \kappa + l

15: \sigma \leftarrow \operatorname{sigEncode}(\tilde{c}, \mathbf{z} \mod^{\pm} q)

16: return \sigma
```



```
Input: Private key sk, message M

Output: Signature \sigma

1: (\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0) \leftarrow \text{skDecode}(sk)

2: \mathbf{A} \leftarrow \text{ExpandA}(\rho)

3: \mu \leftarrow \text{H}(tr \parallel M, 512)

4: rnd \leftarrow \{0, 1\}^{256}

5: \rho' \leftarrow \text{H}(K \parallel rnd \parallel \mu, 512)

6: \kappa \leftarrow 0

7: (\mathbf{z}, \mathbf{h}) \leftarrow \bot
```

```
8: while (\mathbf{z}, \mathbf{h}) = \bot \operatorname{do}

9: \mathbf{y} \leftarrow \operatorname{ExpandMask}(\rho', \kappa)

10: \tilde{c} \leftarrow \mathbf{Ay}

11: c \leftarrow \operatorname{H}(\tilde{c} \parallel \mu)

12: \mathbf{z} \leftarrow \mathbf{y} + cs_1

13: \mathbf{if} \parallel \mathbf{z} \parallel_{\infty} \ge \gamma_1 - \beta \operatorname{then} (\mathbf{z}, \mathbf{h}) \leftarrow \bot

14: \Box \kappa \leftarrow \kappa + l

15: \sigma \leftarrow \operatorname{sigEncode}(\tilde{c}, \mathbf{z} \operatorname{mod}^{\pm} q)

16: return \sigma
```



```
Input: Private key sk, message M

Output: Signature \sigma

1: (\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0) \leftarrow \text{skDecode}(sk)

2: \mathbf{A} \leftarrow \text{ExpandA}(\rho)

3: \mu \leftarrow \text{H}(tr \parallel M, 512)

4: rnd \leftarrow \{0, 1\}^{256}

5: \rho' \leftarrow \text{H}(K \parallel rnd \parallel \mu, 512)

6: \kappa \leftarrow 0

7: (\mathbf{z}, \mathbf{h}) \leftarrow \bot
```

```
8: while (\mathbf{z}, \mathbf{h}) = \bot \operatorname{do}

9: \mathbf{y} \leftarrow \operatorname{ExpandMask}(\rho', \kappa)

10: \tilde{c} \leftarrow \mathbf{Ay}

11: c \leftarrow \operatorname{H}(\tilde{c} \parallel \mu)

12: \mathbf{z} \leftarrow \mathbf{y} + cs_1

13: \mathbf{if} \parallel \mathbf{z} \parallel_{\infty} \ge \gamma_1 - \beta \operatorname{then} (\mathbf{z}, \mathbf{h}) \leftarrow \bot

14: \Box \kappa \leftarrow \kappa + l

15: \sigma \leftarrow \operatorname{sigEncode}(\tilde{c}, \mathbf{z} \operatorname{mod}^{\pm} q)

16: return \sigma
```



```
Input: Private key sk, message M

Output: Signature \sigma

1: (\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0) \leftarrow \text{skDecode}(sk)

2: \mathbf{A} \leftarrow \text{ExpandA}(\rho)

3: \mu \leftarrow \text{H}(tr \parallel M, 512)

4: rnd \leftarrow \{0, 1\}^{256}

5: \rho' \leftarrow \text{H}(K \parallel rnd \parallel \mu, 512)

6: \kappa \leftarrow 0

7: (\mathbf{z}, \mathbf{h}) \leftarrow \bot
```

```
8: while (\mathbf{z}, \mathbf{h}) = \bot \operatorname{do}

9: \mathbf{y} \leftarrow \operatorname{ExpandMask}(\rho', \kappa)

10: \tilde{c} \leftarrow \mathbf{Ay}

11: c \leftarrow \operatorname{H}(\tilde{c} \parallel \mu)

12: \mathbf{z} \leftarrow \mathbf{y} + cs_1

13: \mathbf{if} \parallel \mathbf{z} \parallel_{\infty} \ge \gamma_1 - \beta then (\mathbf{z}, \mathbf{h}) \leftarrow \bot

14: \bot \kappa \leftarrow \kappa + l

15: \sigma \leftarrow \operatorname{sigEncode}(\tilde{c}, \mathbf{z} \mod^{\pm} q)

16: return \sigma
```



```
Input: Private key sk, message M

Output: Signature \sigma

1: (\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0) \leftarrow \text{skDecode}(sk)

2: \mathbf{A} \leftarrow \text{ExpandA}(\rho)

3: \mu \leftarrow \text{H}(tr \parallel M, 512)

4: rnd \leftarrow \{0, 1\}^{256}

5: \rho' \leftarrow \text{H}(K \parallel rnd \parallel \mu, 512)

6: \kappa \leftarrow 0

7: (\mathbf{z}, \mathbf{h}) \leftarrow \bot
```

```
8: while (\mathbf{z}, \mathbf{h}) = \bot \operatorname{do}

9: \mathbf{y} \leftarrow \operatorname{ExpandMask}(\rho', \kappa)

10: \tilde{c} \leftarrow \mathbf{Ay}

11: c \leftarrow \operatorname{H}(\tilde{c} \parallel \mu)

12: \mathbf{z} \leftarrow \mathbf{y} + cs_1

13: \mathbf{if} \parallel \mathbf{z} \parallel_{\infty} \ge \gamma_1 - \beta then (\mathbf{z}, \mathbf{h}) \leftarrow \bot

14: \Box \kappa \leftarrow \kappa + l

15: \sigma \leftarrow \operatorname{sigEncode}(\tilde{c}, \mathbf{z} \mod^{\pm} q)

16: return \sigma
```


ML-DSA signing (simplified)

```
Input: Private key sk, message M

Output: Signature \sigma

1: (\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0) \leftarrow \text{skDecode}(sk)

2: \mathbf{A} \leftarrow \text{ExpandA}(\rho)

3: \mu \leftarrow \text{H}(tr \parallel M, 512)

4: rnd \leftarrow \{0, 1\}^{256}

5: \rho' \leftarrow \text{H}(K \parallel rnd \parallel \mu, 512)

6: \kappa \leftarrow 0

7: (\mathbf{z}, \mathbf{h}) \leftarrow \bot
```

8: while $(\mathbf{z}, \mathbf{h}) = \bot \operatorname{do}$ 9: $\mathbf{y} \leftarrow \operatorname{ExpandMask}(\rho', \kappa)$ 10: $\tilde{c} \leftarrow \mathbf{Ay}$ 11: $c \leftarrow \operatorname{H}(\tilde{c} \parallel \mu)$ 12: $\mathbf{z} \leftarrow \mathbf{y} + cs_1$ 13: $\operatorname{if} \|\|\mathbf{z}\|_{\infty} \ge \gamma_1 - \beta \operatorname{then} (\mathbf{z}, \mathbf{h}) \leftarrow \bot$ 14: $\sqsubset \kappa \leftarrow \kappa + l$ 15: $\sigma \leftarrow \operatorname{sigEncode}(\tilde{c}, \mathbf{z} \operatorname{mod}^{\pm} q)$ 16: return σ


```
Input: Private key sk, message M

Output: Signature \sigma

1: (\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0) \leftarrow \text{skDecode}(sk)

2: \mathbf{A} \leftarrow \text{ExpandA}(\rho)

3: \mu \leftarrow \text{H}(tr \parallel M, 512)

4: rnd \leftarrow \{0, 1\}^{256}

5: \rho' \leftarrow \text{H}(K \parallel rnd \parallel \mu, 512)

6: \kappa \leftarrow 0

7: (\mathbf{z}, \mathbf{h}) \leftarrow \bot
```

```
8: while (\mathbf{z}, \mathbf{h}) = \bot \operatorname{do}

9: \mathbf{y} \leftarrow \operatorname{ExpandMask}(\rho', \kappa)

10: \tilde{c} \leftarrow \mathbf{Ay}

11: c \leftarrow \operatorname{H}(\tilde{c} \parallel \mu)

12: \mathbf{z} \leftarrow \mathbf{y} + cs_1

13: \mathbf{if} \parallel \mathbf{z} \parallel_{\infty} \ge \gamma_1 - \beta \operatorname{then} (\mathbf{z}, \mathbf{h}) \leftarrow \bot

14: \Box \kappa \leftarrow \kappa + l

15: \sigma \leftarrow \operatorname{sigEncode}(\tilde{c}, \mathbf{z} \operatorname{mod}^{\pm} q)

16: return \sigma
```


Hedged-mode ML-DSA

Input: Private key sk, message M**Output:** Signature σ

- 1: $(\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0) \leftarrow \mathsf{skDecode}(sk)$
- 2: $\mathbf{A} \leftarrow \mathsf{ExpandA}(\rho)$
- 3: $\mu \leftarrow H(tr \parallel M, 512)$
- 4: $rnd \leftarrow \{0, 1\}^{256}$
- 5: $\rho' \leftarrow \mathrm{H}(K \parallel rnd \parallel \mu, 512)$
- 6: *κ* ← 0
- 7: **(z, h)** ← ⊥

- Private random seed ρ' used in $\mathbf{y} \leftarrow \text{ExpandMask}(\rho', \kappa)$
- "Hedged" mode
- Offers protection against RNG zeroisation
- Only in ML-DSA, not in CRYSTALS-Dilithium
 - not well studied ...

SHAKE256

- eXtendable Output Function (XOF)
- Part of FIPS-202 (SHA-3)
- Based on Keccak family of permutations
- Uses sponge construction
- Used in ML-DSA to expand seeds, hash messages and sample matrices/vectors (directly or indirectly interacts with secret keys!)

S. Jendral et al.

KTH VETENSKAP OCH KONST

KTH & Ericsson Research

Sponge constructions and SHAKE256

Sponge constructions [Ber+11]

S. Jendral et al.

KTH VETENSKAP OCH KONST

KTH & Ericsson Research

S. Jendral et al.

KTH VETENSKAP OCH KONST

S. Jendral et al.

KTH VETENSKAP OCH KONST

KTH & Ericsson Research

S. Jendral et al.

KTH VETENSKAP OCH KONST

KTH & Ericsson Research

S. Jendral et al.

KTH VETENSKAP OCH KONST

KTH & Ericsson Research

S. Jendral et al.

KTH VETENSKAP OCH KONST

KTH & Ericsson Research

S. Jendral et al.

KTH VETENSKAP OCH KONST

KTH & Ericsson Research

S. Jendral et al.

KTH VETENSKAP OCH KONST

KTH & Ericsson Research

S. Jendral et al.

KTH VETENSKAP OCH KONST

KTH & Ericsson Research

S. Jendral et al.

KTH VETENSKAP OCH KONST

KTH & Ericsson Research

S. Jendral et al.

KTH VETENSKAP OCH KONST

Attack: Skipping absorption

S. Jendral et al.

KTH & Ericsson Research

Attack: Skipping absorption

Output is constant

S. Jendral et al.

KTH & Ericsson Research

Key recovery from known ρ'

```
Input: Private key sk, message M

Output: Signature \sigma

1: (\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0) \leftarrow \text{skDecode}(sk)

2: \mathbf{A} \leftarrow \text{ExpandA}(\rho)

3: \mu \leftarrow \text{H}(tr \parallel M, 512)

4: rnd \leftarrow \{0, 1\}^{256}

5: \rho' \leftarrow \text{H}(K \parallel rnd \parallel \mu, 512)

6: \kappa \leftarrow 0

7: (\mathbf{z}, \mathbf{h}) \leftarrow \bot
```

```
8: while (\mathbf{z}, \mathbf{h}) = \bot \operatorname{do}

9: \mathbf{y} \leftarrow \operatorname{ExpandMask}(\rho', \kappa)

10: \tilde{c} \leftarrow \mathbf{Ay}

11: c \leftarrow \operatorname{H}(\tilde{c} \parallel \mu)

12: \mathbf{z} \leftarrow \mathbf{y} + cs_1

13: \mathbf{if} \parallel \mathbf{z} \parallel_{\infty} \ge \gamma_1 - \beta \operatorname{then} (\mathbf{z}, \mathbf{h}) \leftarrow \bot

14: \bot \kappa \leftarrow \kappa + l

15: \sigma \leftarrow \operatorname{sigEncode}(\tilde{c}, \mathbf{z} \operatorname{mod}^{\pm} q)

16: return \sigma
```


Key recovery from known ρ'

```
Input: Private key sk, message M

Output: Signature \sigma

1: (\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0) \leftarrow \text{skDecode}(sk)

2: \mathbf{A} \leftarrow \text{ExpandA}(\rho)

3: \mu \leftarrow \text{H}(tr \parallel M, 512)

4: rnd \leftarrow \{0, 1\}^{256}

5: \rho' \leftarrow \text{H}(K \parallel rnd \parallel \mu, 512)

6: \kappa \leftarrow 0

7: (\mathbf{z}, \mathbf{h}) \leftarrow \bot
```

```
8: while (\mathbf{z}, \mathbf{h}) = \bot \operatorname{do}

9: | \mathbf{y} \leftarrow \operatorname{ExpandMask}(\rho', \kappa)

10: \tilde{c} \leftarrow \mathbf{A}\mathbf{y}

11: c \leftarrow \operatorname{H}(\tilde{c} \parallel \mu)

12: \mathbf{z} \leftarrow \mathbf{y} + cs_1

13: | \mathbf{if} \parallel \mathbf{z} \parallel_{\infty} \ge \gamma_1 - \beta \operatorname{then} (\mathbf{z}, \mathbf{h}) \leftarrow \bot

14: \bot \kappa \leftarrow \kappa + l

15: \sigma \leftarrow \operatorname{sigEncode}(\tilde{c}, \mathbf{z} \operatorname{mod}^{\pm} q)

16: return \sigma
```


Key recovery from known ρ'

```
Input: Private key sk, message M

Output: Signature \sigma

1: (\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0) \leftarrow \text{skDecode}(sk)

2: \mathbf{A} \leftarrow \text{ExpandA}(\rho)

3: \mu \leftarrow \text{H}(tr \parallel M, 512)

4: rnd \leftarrow \{0, 1\}^{256}

5: \rho' \leftarrow \text{H}(K \parallel rnd \parallel \mu, 512)

6: \kappa \leftarrow 0

7: (\mathbf{z}, \mathbf{h}) \leftarrow \bot
```

```
8: while (\mathbf{z}, \mathbf{h}) = \bot \operatorname{do}

9: \mathbf{y} \leftarrow \operatorname{ExpandMask}(\rho', \kappa)

10: \tilde{c} \leftarrow \mathbf{Ay}

11: c \leftarrow \operatorname{H}(\tilde{c} \parallel \mu)

12: \mathbf{z} \leftarrow \mathbf{y} + cs_1

13: \mathbf{if} \parallel \mathbf{z} \parallel_{\infty} \ge \gamma_1 - \beta \operatorname{then} (\mathbf{z}, \mathbf{h}) \leftarrow \bot

14: \Box \kappa \leftarrow \kappa + l

15: \sigma \leftarrow \operatorname{sigEncode}(\tilde{c}, \mathbf{z} \operatorname{mod}^{\pm} q)

16: return \sigma
```


Fault injection method

ChipWhisperer-Husky:

- Inexpensive (\$550), easy to use
- Clock glitching:
 - Inject/withhold rising edge in clock signal
- Voltage glitching:
 - Short power supply
- Requires precise timing

Voltage glitching parameters

Attack: Skipping absorption

Succeeds in a single trace with probability 52.8%

- Generic fault detection / CFI
- Eliminate branches
- Sample ρ' inside the rejection sampling loop
- Include *rnd* or *K* when sampling **y**

```
Input: Private key sk, message M
Output: Signature \sigma
  1: (\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0) \leftarrow \mathsf{skDecode}(sk)
 2: \mathbf{A} \leftarrow \mathsf{ExpandA}(\rho)
  3: \mu \leftarrow H(tr \parallel M, 512)
 4: rnd \leftarrow \{0, 1\}^{256}
  5: \rho' \leftarrow H(K \parallel rnd \parallel \mu, 512)
 6: \kappa \leftarrow 0
  7: (\mathbf{z}, \mathbf{h}) \leftarrow \bot
 8: while (\mathbf{z}, \mathbf{h}) = \bot do
  9: \mathbf{y} \leftarrow \mathsf{ExpandMask}(\rho', \kappa)
10: \tilde{c} \leftarrow \mathbf{A}\mathbf{v}
11: c \leftarrow H(\tilde{c} \parallel \mu)
12: \mathbf{z} \leftarrow \mathbf{y} + cs_1
             if \|\mathbf{z}\|_{\infty} \ge \gamma_1 - \beta then (\mathbf{z}, \mathbf{h}) \leftarrow \bot
13:
14: \kappa \leftarrow \kappa + l
15: \sigma \leftarrow \text{sigEncode}(\tilde{c}, \mathbf{z} \mod^{\pm} q)
16: return σ
```


Succeeds in a single trace with probability 52.8%

Countermeasures:

- Generic fault detection / CFI
- Eliminate branches
- Sample ρ' inside the rejection sampling loop
- Include *rnd* or *K* when sampling **y**

Input: Private key *sk*, message *M* **Output:** Signature σ 1: $(\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0) \leftarrow \text{skDecode}(sk)$ 2: $\mathbf{A} \leftarrow \mathsf{ExpandA}(\rho)$ 3: $\mu \leftarrow H(tr \parallel M, 512)$ 4: $rnd \leftarrow \{0, 1\}^{256}$ 5: $\rho' \leftarrow H(K \parallel rnd \parallel \mu, 512)$ 6: $\kappa \leftarrow 0$ 7: (**z**, **h**) ← ⊥ 8: while $(\mathbf{z}, \mathbf{h}) = \bot$ do $\mathbf{y} \leftarrow \mathsf{ExpandMask}(\rho', \kappa)$ 9: 10: $\tilde{c} \leftarrow \mathbf{A}\mathbf{v}$ $c \leftarrow H(\tilde{c} \parallel \mu)$ 11: $\mathbf{z} \leftarrow \mathbf{y} + cs_1$ 12: if $\|\mathbf{z}\|_{\infty} \geq \gamma_1 - \beta$ then $(\mathbf{z}, \mathbf{h}) \leftarrow \bot$ 13: 14: $\kappa \leftarrow \kappa + l$ 15: $\sigma \leftarrow sigEncode(\tilde{c}, \mathbf{z} \mod^{\pm} q)$ 16: return σ

Succeeds in a single trace with probability 52.8%

- Generic fault detection / CFI
- Eliminate branches
- Sample ρ' inside the rejection sampling loop
- Include *rnd* or *K* when sampling **y**

```
Input: Private key sk, message M
Output: Signature \sigma
  1: (\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0) \leftarrow \text{skDecode}(sk)
 2: \mathbf{A} \leftarrow \mathsf{ExpandA}(\rho)
  3: \mu \leftarrow H(tr \parallel M, 512)
 4: rnd \leftarrow \{0, 1\}^{256}
  5: \rho' \leftarrow H(K \parallel rnd \parallel \mu, 512)
 6. \kappa \leftarrow 0
 7: (z, h) ← ⊥
 8: while (\mathbf{z}, \mathbf{h}) = \bot do
  9: \mathbf{y} \leftarrow \mathsf{ExpandMask}(\rho', \kappa)
10: \tilde{c} \leftarrow \mathbf{A}\mathbf{v}
11: c \leftarrow H(\tilde{c} \parallel \mu)
12: \mathbf{z} \leftarrow \mathbf{y} + cs_1
             if \|\mathbf{z}\|_{\infty} \geq \gamma_1 - \beta then (\mathbf{z}, \mathbf{h}) \leftarrow \bot
13:
14: \kappa \leftarrow \kappa + l
15: \sigma \leftarrow \text{sigEncode}(\tilde{c}, \mathbf{z} \mod^{\pm} q)
16· return σ
```


Succeeds in a single trace with probability 52.8%

- Generic fault detection / CFI
- Eliminate branches
- Sample ρ' inside the rejection sampling loop
- Include *rnd* or *K* when sampling **y**

```
Input: Private key sk, message M
Output: Signature \sigma
  1: (\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0) \leftarrow \mathsf{skDecode}(sk)
 2: \mathbf{A} \leftarrow \mathsf{ExpandA}(o)
  3: \mu \leftarrow H(tr \parallel M, 512)
 4: \kappa \leftarrow 0
  5: (\mathbf{z}, \mathbf{h}) \leftarrow \bot
  6: while (\mathbf{z}, \mathbf{h}) = \bot do
  7: rnd \leftarrow \{0, 1\}^{256}
             \rho' \leftarrow H(K \parallel rnd \parallel \mu, 512)
 8:
             \mathbf{y} \leftarrow \mathsf{ExpandMask}(\rho', \kappa)
  9:
          \tilde{c} \leftarrow \mathbf{A}\mathbf{v}
10:
             c \leftarrow H(\tilde{c} \parallel \mu)
11:
12: \mathbf{z} \leftarrow \mathbf{y} + cs_1
             if \|\mathbf{z}\|_{\infty} \geq \gamma_1 - \beta then (\mathbf{z}, \mathbf{h}) \leftarrow \bot
13:
14: \kappa \leftarrow \kappa + l
15: \sigma \leftarrow sigEncode(\tilde{c}, \mathbf{z} \mod^{\pm} q)
16· return σ
```


Succeeds in a single trace with probability 52.8%

- Generic fault detection / CFI
- Eliminate branches
- Sample ρ' inside the rejection sampling loop
- Include *rnd* or *K* when sampling **y**

```
Input: Private key sk, message M
Output: Signature \sigma
  1: (\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0) \leftarrow \mathsf{skDecode}(sk)
 2: \mathbf{A} \leftarrow \mathsf{ExpandA}(\rho)
  3: \mu \leftarrow H(tr \parallel M, 512)
 4: rnd \leftarrow \{0, 1\}^{256}
  5: \rho' \leftarrow H(K \parallel rnd \parallel \mu, 512)
 6: \kappa \leftarrow 0
 7: (\mathbf{z}, \mathbf{h}) \leftarrow \bot
 8: while (\mathbf{z}, \mathbf{h}) = \bot do
  9:
             \mathbf{y} \leftarrow \mathsf{ExpandMask}(\rho', \kappa)
10: \tilde{c} \leftarrow \mathbf{A}\mathbf{v}
11: c \leftarrow H(\tilde{c} \parallel \mu)
12: \mathbf{z} \leftarrow \mathbf{y} + cs_1
             if \|\mathbf{z}\|_{\infty} \geq \gamma_1 - \beta then (\mathbf{z}, \mathbf{h}) \leftarrow \bot
13:
14: \kappa \leftarrow \kappa + l
15: \sigma \leftarrow \text{sigEncode}(\tilde{c}, \mathbf{z} \mod^{\pm} q)
16: return σ
```


Succeeds in a single trace with probability 52.8%

- Generic fault detection / CFI
- Eliminate branches
- Sample ρ' inside the rejection sampling loop
- Include *rnd* or *K* when sampling **y**

```
Input: Private key sk, message M
Output: Signature \sigma
  1: (\rho, K, tr, \mathbf{s}_1, \mathbf{s}_2, \mathbf{t}_0) \leftarrow \mathsf{skDecode}(sk)
 2: \mathbf{A} \leftarrow \mathsf{ExpandA}(\rho)
  3: \mu \leftarrow H(tr \parallel M, 512)
 4: rnd \leftarrow \{0, 1\}^{256}
  5: \rho' \leftarrow H(K \parallel rnd \parallel \mu, 512)
 6: \kappa \leftarrow 0
  7: (\mathbf{z}, \mathbf{h}) \leftarrow \bot
 8: while (\mathbf{z}, \mathbf{h}) = \bot do
             \mathbf{y} \leftarrow \mathsf{ExpandMask}(\rho', \kappa, rnd, K)
  9:
10: \tilde{c} \leftarrow Av
11: c \leftarrow H(\tilde{c} \parallel \mu)
12: \mathbf{z} \leftarrow \mathbf{y} + cs_1
             if \|\mathbf{z}\|_{\infty} \ge \gamma_1 - \beta then (\mathbf{z}, \mathbf{h}) \leftarrow \bot
13:
14: \kappa \leftarrow \kappa + l
15: \sigma \leftarrow \text{sigEncode}(\tilde{c}, \mathbf{z} \mod^{\pm} q)
16: return σ
```


Conclusions & Future work

- Point-of-failure ρ' allows trivial single trace key recovery
- Fault injection attack makes strong assumptions:
 - Physical access, ability to precisely skip instructions
 - ChipWhisperer is idealised target
- No hedged ML-DSA implementations yet
- ML-DSA final standard: Init-Absorb-Squeeze now explicit
 - Implementations unlikely to provide multiple variants
 - Variable-sized hash function when only fixed-sized is required
- SHAKE256 used in other PQC algorithms

