
1

Improving CPU Fault Injection Simulations
Insights from RTL to Instruction-Level Models

Public

Jasper van Woudenberg, Rajesh Velegalati,

Cees-Bart Breunesse, Dennis Vermoen

FDTC 2024

SECURITY SOLUTIONS

2

Programmers have a hard time developing FI resistant code

Can we help programmers create more resistant code through simulation?

Countermeasure refs:

https://riscureprodstorage.blob.core.windows.net/production/2017/08/Riscure_Whitepaper_Side_Channel_Patterns.pdf

http://hardwarehack.ing

Problem statement

https://riscureprodstorage.blob.core.windows.net/production/2017/08/Riscure_Whitepaper_Side_Channel_Patterns.pdf
http://hardwarehack.ing/

3

Rankings; higher is better

FI approach comparison

Public

RTL level sim (RLS) Instruct. level sim (ILS) Post-si fault injection

Accuracy 1 0 2

Runtime 0 (but scales with

compute)

1 (also scales) 2 (scales poorly)

Ease of triage/fixing for

sw dev

0 2 1

ROM fixing possibilities 1 2 0

Can we make this “2”?

4

Research overview

Characterization
program

Single fault in
RLS

Architectural
states for entire

program

Classify
differences with

non-faulted
reference

Gather
probabilities for

classes per
mnemonic

Apply in ILS

5

• We want fault statistics per mnemonic, presumably

different statistics

• Put in (almost) all rv32imc instruction (mnemonics)

• Ensure each instruction changes the architectural

state

• Arch state we look at is registers + PC only

Characterization program

…
 sltu x13, x1, x2
 lui x1, 0x12345
 sra x14, x1, x2
 srl x15, x1, x2
 sub x16, x1, x2
 xor x17, x1, x2
 xori x18, x1, 0xff
 beq x1, x1, label_beq
 .word 0x00000013 // NOP in 32 bit
label_beq:
 bge x1, x2, label_bge
 nop
label_bge:
 bgeu x1, x2, label_bgeu
 nop
label_bgeu:
 blt x17, x1, label_blt
 nop
label_blt:
 bltu x1, x2, label_bltu
 nop
label_bltu:
 bne x1, x2, label_bne
…

6

• Verilated Picorv32 core (configured for rv32imc), enhanced with FI capabilities

• Not faulting memories, only logic.

• Generates #clock cycles x #targets architectural state traces

RTL level simulator

7

• There is no 1:1 mapping between clock cycles and program counter (even in picorv32!)

• But, we can detect which state gets affected, and map back to that PC

Mapping faults to architectural states

State X1 PC

0 ab 00

1 cd 02

2 38 06

State X1 PC

0 ab 00

1 cd 02

2 39 06

Golden run Faulted run
http://ece-research.unm.edu/jimp/611/slides/chap3_1.html

8

• For each RLS fault, we now know the instruction it was caused on and the arch state diff

Fault differences

9

• Characterize the effect into 6 classes

• Aggregate counts per mnemonic

• The resulting model we call Architectural Fault

Effect Model (AFEM)

• We ignore “unknown”

Classify the fault differences

10

• Obtain an architectural state to fault

• Flip weighted coin to choose a class

• Further flip coin where applicable to select a

register and/or bits therein

Instruction Level Simulator using AFEM

11

• Compare ILS AFEM $x samples to RLS, NOP, NOP2, instruction bitflip

• $x = how often to do a program run with fault per instruction

• Test program from FIRM*: branch test, memory test, register test

• Correlation between vectors PC -> successful fault probability; RLS baseline

* FI Resistance Metric developed at Riscure by Carlo Maragno, Praveen Vadnala, Pierre-Yves Peneau, Chris Berg, Nisrine Jafri, Marc

Witteman

Evaluation for accuracy and runtime

12

• We don’t care about absolute height of peaks (hw prob << sw prob)

• We do care about relative heights (sensitive areas in program)

• Per PC, prediction on hw prob given sw prob

• Pearson correlation fits this

Correlation rationale

public

Correlate ‘red’ and ‘blue’

13

Accuracy vs time tradeoffs

Simulation
model

ρ sim time (s)

RLS 1 63k

ILS AFEM
1000

0.83 144

ILS AFEM 100 0.83 14.4

ILS ins bitflip 0.70 3.9

ILS AFEM 25 0.56 3.59

ILS NOP 0.45 0.15

ILS AFEM 10 0.38 1.5

ILS NOP 2 0.32 0.13

14

• Test code is test code and may not represent real applications

• Try boot code (… also test code, admittedly)

Application to boot code

int main(void) {
 if (!signature_verify()) {
 result[0] = 0xCAFEBABE;
 } else {
 application_entry_point();
 }
 // Do not return from this main function!
 while(1) {}
}

15

Reg_pc[7,8,9,15]

Src 0x38—0x68

Reg_pc[7,8,9,15]

70+2^7=0xc6 -> exit out of signature_verify (ret true)

70+2^8=0x146 -> middle of sha256_transform. (ret true)

70+2^9=0x246 -> epilog of sha256_transform (ret true)

16

Register a5 changes

signature_verify()

17

0x4be: affect memcmp() result

0x4ca: flip a0 bit (data)

0x4cc: affect instruction; a4

wrong result (false positive)

18
public

Sp[5] or sp[7] corruption in

Sha256_final or sha256_update

Affects return value

19

• Insight: most faults directly affect the register state

• Processor registers are a significant chunk of the RTL registers

• Most relevant: src register, the PC, return address (RA), or Stack Pointer (SP).

• Try next model: randomly select one of these CPU registers and flip a random bit within the

chosen register.

• No longer conditional probability on the instruction mnemonic

Improved AFEM: ‘regonly’

20

• Identifies very similar regions to the RLS

• ρ = 0.06; ‘regonly’ predicts vulnerable locations, not accurately assigns probability

Regonly results

21

• Generalization beyond picorv32 / rv32imc to larger designs

• Simple programs used; most bit flips cause relevant faults

• Did not test programs / CPUs with countermeasures

• RLS as baseline, instead of post-si testing

• Simple input fault models (no complex multi-bit faults)

• Larger designs / software require significant #CPUs

Discussion

22

• Predicting relevant code paths for FI is non-trivial, simulation/testing can help

• We can learn FI models from arbitrary CPU implementations

• Faster than RLS

• More accurate than existing instruction skip/bitflip models

• For our CPU, we can improve by manually finetuning the model

Conclusions

23

Future:

• Metrics that reflect indicating relevant code parts (as opposed to predicting the fault effects)

• Post-si evaluation of the models accuracy in sensitive code

• Validate how generic the models are

We would like to thank Google for their funding of this work

Future work

Thank you

25

INStruction bitflip

public

<- Corrupt of check_signature

Check / respond in main ->

26

NOP

public

<- Corrupt of check_signature

Check / respond in main ->

27

nop2

public

<- Corrupt of check_signature

Check / respond in main ->

28

Metric

public

Property Desire Metric

Relevance rank most sensitive parts

of code

correlation hw and sw

Actionable highlight lines of code

Indicate fault model

no metric needed,

straight output from sw

simulator

Performance run sim in reasonable

time

instructions/sec

sec/full test

	Slide 1: Improving CPU Fault Injection Simulations Insights from RTL to Instruction-Level Models
	Slide 2: Problem statement
	Slide 3: FI approach comparison
	Slide 4: Research overview
	Slide 5: Characterization program
	Slide 6: RTL level simulator
	Slide 7: Mapping faults to architectural states
	Slide 8: Fault differences
	Slide 9: Classify the fault differences
	Slide 10: Instruction Level Simulator using AFEM
	Slide 11: Evaluation for accuracy and runtime
	Slide 12: Correlation rationale
	Slide 13: Accuracy vs time tradeoffs
	Slide 14: Application to boot code
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Improved AFEM: ‘regonly’
	Slide 20: Regonly results
	Slide 21: Discussion
	Slide 22: Conclusions
	Slide 23: Future work
	Slide 24
	Slide 25: INStruction bitflip
	Slide 26: NOP
	Slide 27: nop2
	Slide 28: Metric

