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Programmers have a hard time developing FI resistant code

Can we help programmers create more resistant code through simulation?

Countermeasure refs:

https://riscureprodstorage.blob.core.windows.net/production/2017/08/Riscure_Whitepaper_Side_Channel_Patterns.pdf 

http://hardwarehack.ing 

Problem statement

https://riscureprodstorage.blob.core.windows.net/production/2017/08/Riscure_Whitepaper_Side_Channel_Patterns.pdf
http://hardwarehack.ing/
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Rankings; higher is better

FI approach comparison

Public

RTL level sim (RLS) Instruct. level sim (ILS) Post-si fault injection

Accuracy 1 0 2

Runtime 0 (but scales with 

compute)

1 (also scales) 2 (scales poorly) 

Ease of triage/fixing for 

sw dev

0 2 1

ROM fixing possibilities 1 2 0

Can we make this “2”?
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Research overview

Characterization 
program

Single fault in 
RLS

Architectural 
states for entire 

program

Classify 
differences with 

non-faulted 
reference

Gather 
probabilities for 

classes per 
mnemonic

Apply in ILS
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• We want fault statistics per mnemonic, presumably 

different statistics

• Put in (almost) all rv32imc instruction (mnemonics)

• Ensure each instruction changes the architectural 

state

• Arch state we look at is registers + PC only

Characterization program

…
 sltu x13, x1, x2
    lui x1, 0x12345
    sra x14, x1, x2
    srl x15, x1, x2
    sub x16, x1, x2
    xor x17, x1, x2
    xori x18, x1, 0xff
    beq x1, x1, label_beq
    .word 0x00000013 // NOP in 32 bit
label_beq:
    bge x1, x2, label_bge
    nop
label_bge:
    bgeu x1, x2, label_bgeu
    nop
label_bgeu:
    blt x17, x1, label_blt
    nop
label_blt:
    bltu x1, x2, label_bltu
    nop
label_bltu:
    bne x1, x2, label_bne
…
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• Verilated Picorv32 core (configured for rv32imc), enhanced with FI capabilities

• Not faulting memories, only logic.

• Generates #clock cycles x #targets architectural state traces

RTL level simulator 
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• There is no 1:1 mapping between clock cycles and program counter (even in picorv32!)

• But, we can detect which state gets affected, and map back to that PC

Mapping faults to architectural states

State X1 PC

0 ab 00

1 cd 02

2 38 06

State X1 PC

0 ab 00

1 cd 02

2 39 06

Golden run Faulted run
http://ece-research.unm.edu/jimp/611/slides/chap3_1.html
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• For each RLS fault, we now know the instruction it was caused on and the arch state diff

Fault differences
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• Characterize the effect into 6 classes

• Aggregate counts per mnemonic

• The resulting model we call Architectural Fault 

Effect Model (AFEM)

• We ignore “unknown”

Classify the fault differences
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• Obtain an architectural state to fault

• Flip weighted coin to choose a class

• Further flip coin where applicable to select a 

register and/or bits therein 

Instruction Level Simulator using AFEM
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• Compare ILS AFEM $x samples to RLS, NOP, NOP2, instruction bitflip

• $x = how often to do a program run with fault per instruction

• Test program from FIRM*: branch test, memory test, register test

• Correlation between vectors PC -> successful fault probability; RLS baseline

* FI Resistance Metric developed at Riscure by Carlo Maragno, Praveen Vadnala, Pierre-Yves Peneau, Chris Berg, Nisrine Jafri, Marc 

Witteman

Evaluation for accuracy and runtime
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• We don’t care about absolute height of peaks (hw prob << sw prob)

• We do care about relative heights (sensitive areas in program)

• Per PC, prediction on hw prob given sw prob

• Pearson correlation fits this

Correlation rationale
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Correlate ‘red’ and ‘blue’
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Accuracy vs time tradeoffs

Simulation 
model

ρ sim time (s)

RLS 1 63k

ILS AFEM 
1000

0.83 144

ILS AFEM 100 0.83 14.4

ILS ins bitflip 0.70 3.9

ILS AFEM 25 0.56 3.59

ILS NOP 0.45 0.15

ILS AFEM 10 0.38 1.5

ILS NOP 2 0.32 0.13



14

• Test code is test code and may not represent real applications

• Try boot code (… also test code, admittedly)

Application to boot code

int main(void) {
  if (!signature_verify()) {    
    result[0] = 0xCAFEBABE;
  } else {
    application_entry_point();
  }
  // Do not return from this main function!
  while(1) {}
}
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Reg_pc[7,8,9,15]

Src 0x38—0x68

Reg_pc[7,8,9,15]

70+2^7=0xc6 -> exit out of signature_verify (ret true)

70+2^8=0x146 -> middle of sha256_transform. (ret true)

70+2^9=0x246 -> epilog of sha256_transform (ret true)
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Register a5 changes

signature_verify()



17

0x4be: affect memcmp() result

0x4ca: flip a0 bit (data)

0x4cc: affect instruction; a4 

wrong result (false positive)
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Sp[5] or sp[7] corruption in

Sha256_final or sha256_update

Affects return value



19

• Insight: most faults directly affect the register state

• Processor registers are a significant chunk of the RTL registers

• Most relevant: src register, the PC, return address (RA), or Stack Pointer (SP). 

• Try next model: randomly select one of these CPU registers and flip a random bit within the 

chosen register. 

• No longer conditional probability on the instruction mnemonic 

Improved AFEM: ‘regonly’
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• Identifies very similar regions to the RLS

• ρ = 0.06; ‘regonly’ predicts vulnerable locations, not accurately assigns probability

Regonly results
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• Generalization beyond picorv32 / rv32imc to larger designs

• Simple programs used; most bit flips cause relevant faults

• Did not test programs / CPUs with countermeasures

• RLS as baseline, instead of post-si testing

• Simple input fault models (no complex multi-bit faults)

• Larger designs / software require significant #CPUs

Discussion
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• Predicting relevant code paths for FI is non-trivial, simulation/testing can help

• We can learn FI models from arbitrary CPU implementations

• Faster than RLS

• More accurate than existing instruction skip/bitflip models

• For our CPU, we can improve by manually finetuning the model

Conclusions



23

Future:

• Metrics that reflect indicating relevant code parts (as opposed to predicting the fault effects)

• Post-si evaluation of the models accuracy in sensitive code

• Validate how generic the models are

We would like to thank Google for their funding of this work

Future work



Thank you
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INStruction bitflip
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<- Corrupt of check_signature

Check / respond in main -> 
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NOP

public

<- Corrupt of check_signature

Check / respond in main -> 
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nop2

public

<- Corrupt of check_signature

Check / respond in main -> 
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Metric

public

Property Desire Metric

Relevance rank most sensitive parts 

of code

correlation hw and sw

Actionable highlight lines of code

Indicate fault model

no metric needed, 

straight output from sw 

simulator

Performance run sim in reasonable 

time

instructions/sec

sec/full test
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