

PoP DRAM: A new EMFI approach based on EMinduced glitches on SoC

Clément Fanjas, Driss Aboulkassimi, Simon Pontié, Jessy Clédière

PoP DRAM: A new EMFI approach based on EM-induced glitches on SoC

Summary

- I. Context and related works
- II. Target and setup
- III. Fault Injection methodologies and results
 - 1. EMFI
 - 2. EM-induced glitch
 - 3. Voltage glitch
- IV. Conclusion

Context : Electromagnetic Fault Injection (EMFI)

How do we inject fault using EMFI:

- Injecting a voltage pulse into an active probe located above the targeted chip.
- Depending on the probe position over the chip, an EM coupling is created between the target and the probe.
- This coupling induces a transient current inside the chip which can corrupt the normal operation.

З

Context : Package-on-Package SoC

In modern SoC, an other chip (often a DRAM) is stacked **above** the SoC.

Related works : Package-on-Package SoC

It reduces the efficiency of local Fault Injection method such as EMFI or Optical Fault Injection :

Nourdin Aït El Mehdi [2019]

Analyzing the Resilience of Modern Smartphones Against Fault Injection Attacks

Fault model identified but not relevant in early boot attack scenarios.

Vasselle et al. [2017] Laser-Induced Fault Injection on Smartphone Bypassing the Secure Boot

Target

<u>Target:</u> Smartphone System-on-Chip on dev-board:

- 4 custom ARM (aarch64) cores
 - \Rightarrow 2 cores up to 2.15GHz
 - \Rightarrow 2 cores up to 1.59GHz
- Secure-Boot disabled
- Emergency program running in SRAM at the SSBL level

Objective: Fault the target despite the PoP DRAM.

Cez PoP DRAM: A new EMFI approach based on EM-induced glitches on SoC

Target

<u>Target:</u> Smartphone System-on-Chip on dev-board:

- 4 custom ARM (aarch64) cores
 - \Rightarrow 2 cores up to 2.15GHz
 - \Rightarrow 2 cores up to 1.59GHz
- Secure-Boot disabled
- Emergency program running in SRAM at the SSBL level

Objective: Fault the target despite the PoP DRAM.

Ces

Cez

MFI approach based on EM-induced glitches on SoC

14

Ces

Method 1 : Conventional EMFI above the SoC with the PoP DRAM.

Reducing the target supply voltage might help injecting faults.

Software Setup
Fl methods
Faults obtained
Fault comparison

Method 1 : Conventional EMFI above the SoC with the PoP DRAM.

Results of this approach : No Faults

Method 2 : Conventional EMFI above the SoC without the PoP DRAM.

Vasselle et al. (2017) show that the first stages of the boot run correctly even if the DRAM has been removed.

18

1. Software Setup **2. FI methods**

- 3. Faults obtained
- 4. Fault comparison

Method 2: Conventional EMFI above the SoC without the PoP DRAM.

Vasselle et al. (2017) show that the first stages of the boot run correctly even if the DRAM has been removed.

Method 2 : Conventional EMFI above the SoC without the PoP DRAM.

- 70 60 20 - 10 -0 1 mm

Fault map for 400V/10ns pulse 500 retries per position

XY Fault Map over the SoC imaging (100um step, fixed Z axis)

PoP DRAM: A new EMFI approach based on EM-induced glitches on SoC

Method 3 : EM-induced glitches :

The idea is to induces voltage glitches on the target supply voltage line by using EM pulses.

1. Software Setup 2. FI methods 3. Faults obtained 4. Fault comparison

Method 3 : EM-induced glitches :

Cez

The idea is to induces voltage glitches on the target supply voltage line by using EM pulses.

<u>Method 4 : Conventional voltage glitches :</u>

A pulse is injected through a 100nF capacitor soldered on the supply voltage line.

Fault obtained

Software Setup
FI methods
Faults obtained
Fault comparison

Method 3 : EM-induced glitches :

Cez

Fault obtained

<u>Method 4 : Conventional voltage glitches :</u>

Results

25

Results

Package-on-Package : Conclusion

Evaluation of PoP as a countermeasure against EMFI:

- Conventional EMFI is not possible with our setup on a PoP target

Presentation of 3 methods to inject faults in a SoC despite the PoP:

- EMFI above the SoC, the target DRAM has to be removed (Vasselle et al. (2017)).

- **EM-induced glitch** \Rightarrow injection of EM pulses above the decoupling capacitor to induce glitches on the target power supply rail.

- Conventional voltage glitch on the target power supply rail.

<u>Comparison of the faults induced with the 3 methods:</u>

- EMFI \approx EM-induced glitch \neq Voltage glitch
- Prospects:
 - Repeat this work to fault a real-life target (PoP SoC implemented in a smartphone)
 - Extend the fault modelization
 - Study EM-induced glitches on others component (bulk capacitors, PMIC).

Thank you for your attention.

Clément Fanjas clement.fanjas@cea.fr