‘ MITSUBISHI
FDTC 2025 AV N ELECTRIC

Changes for the Better

14th September 2025 in Kuala Lumpur, Malaysia

Improving Fault Vulnerability Detection via
Rehosting and Comparative Analysis of

Open-source Tools

Shoei Nashimoto*

*Mitsubishi Electric Corporation

This presentation is based on results obtained from a project, JANP24003, commissioned by
the New Energy and Industrial Technology Development Organization (NEDO).

©Mitsubishi Electric Corporation

))) ¢ wmTsuBISHI
This Talk in Brief AW ELECTRIC

Changes for the Better

Challenges
1) Fast but low fidelity 2) Lack of benchmark dataset

LY AR ldr r‘3, [r‘?, #20] : 1
E - ? 1dr r2, [r7, #12] ; al
:‘: add r3, r2
- 7 N

TITIT i ldrb r2, [r3, #0] ; r2
SPEED FIDELITY ldr r3, [r7, #20] ; i

Solution @ @

1) Rehosting improves fidelity 2) Creation of labeled dataset

R nnnns ‘,lllll! 1dr r3, [r7, #2071 ; i
= = ldr r2, [r7, #12] ; al
Es "EE add 3, 2

SPEED FIDELITY

N

ldrb r2, [r3, #0] ; r2
1dr r3, [r7, #20] ; i

Results: Rehosting achieves near-perfect recall (99%-100%) while keeping high speed

©Mitsubishi Electric Corporation 2/2 7

) ¢ wmTsuBISHI
Outline AW ELECTRIC

Changes for the Better

Background

Fault Vulnerability Detection

Rehosting

Experiment

Discussion

Conclusion

©Mitsubishi Electric Corporation 3 /2 7

‘ MITSUBISHI
AV N ELECTRIC

Changes for the Better

Background

©Mitsubishi Electric Corporation 4/27

Back
ground Fault Injection Attack (FIA) against Actual Product PN

Changes for the Better

If software is secure, attack hardware

Glitch Setup in Reality

SVI2 bus

Teensy
pController

BV

SPI bus

o
Y > S%i'n .
ATX reset J '4‘

SPI programmer
Serial output

Game console [s] Cryptocurrency wallet [6] Automotive unit u

 Software security for embedded devices is improving

* Attackers seek the next “weakest point,” targeting fault attacks

[4] C. Werling, N. K"uhnapfel, H. N. Jacob, and O. Drokin, “Jailbreaking an Electric Vehicle in 2023 or What It Means to Hotwire Tesla’s x86-Based Seat Heater,” BlackHat Asia, 2023.
[5] plutoo, derrek and naehrwert, “Console Security — Switch”, 2017
[6] J. Datko, C. Quartier, and K. Belyayev, “Breaking Bitcoin Hardware Wallets: Glitches cause stitches!" DEF CON 2017, 2017

©Mitsubishi Electric Corporation 5/ 2 7

Back
FIA Resistance in Software Design Phase RNy
ground

Changes for the Better

Increasing demand for fault vulnerability detection (FVD) from binary

Why software-based detection? Yuin! 8000054 : 1dr r3, [r7, #20] ; i
8000056 : ldr r2, [r7, #12] ; ail
« Scalable, reproducible, cost-effective 8000058: add r3, r2
800005a: ldrb r2, [r3, #0] ; r2
comparing to physical FIA 800005c: 1dr r3, [r7, #20] ; i
800005e:: ldr r1, [r7, #8]
8000060 : add r3, ri
8000062 1drb r3, [r3, #0] ; r3
Why binary? 8000064 : cmp r2, r3
8000066 : beq.n 800006c <byteArrayCo
 Higher-level languages diverge from physical mechanisms 8000068 movs r3, #0

800006a: b.n 800007c <byteArrayComp

* Binary is the closest to hardware within the software layer Concept of FVD from binary

©Mitsubishi Electric Corporation 6/ 2 7

Back ¢ mITSUBISHI
ground Challenges A% ELECTRIC

Changes for the Better

1) Speed vs. Fidelity, 2) Lack of benchmark dataset

1. Trade-offs between speed and fidelity: -
1) Fast but low fidelity

* Instruction Set Emulation (ISE)-based tools prioritize speed by

omitting system-level emulation (-~ QEMU) A EE- E]

 This simplification leads to inaccurate memory and register TTTTT

initialization, causing false positives and negatives SPEED FIDELITY

2. Lack of Standardized Benchmarks:

2) Lack of benchmark dataset
* Lack of ground-truth labeled datasets makes fair and
1dr r3, [r7, #20] ; i

9 ldr r2, [r7, #12] ; al
add r3, r2

 This is due to the difficulty in manual verification of N

reproducible tool comparison difficult

ldrb r2, [r3, #0] ; r2
“all fault patterns” 1dr r3, [r7, #20] ; i

©Mitsubishi Electric Corporation 7/ 27

Back
Our Contributions A'é"&%‘%%'%”‘
g rou nd Changes for the Better

1) Rehosting for FVD, 2) Integration of results from multiple tools

1. Rehosting for Improved Fidelity:
1) Rehosting improves fidelity

* Introduced a rehosting technique to mitigate misclassification in

ISE-based tools (e.g., FaultFinder). LLLLL . - LLILL
A |:| = l:l
 Accurately reproduces memory and register states, ensuring = =

faithful system initialization SPEED FIDELITY

2. Labeled Benchmark Creation and Comparative Analysis

- Constructed a labeled benchmark dataset by manually verifying 2) Creation of labeled

vulnerabilities from multiple tools Vuln! ldr r3, [r7, #207 ; i
ldr r2, [r7, #12] ; al

« This significantly reduces verification cost and enables systematic add r3. 2

misclassification pattern identification

ldrb r2, [r3, #0] ; r2
1dr r3, [r7, #20] ; i

» This benchmark enables to evaluate the speed and detection
performance of FVD tools

8/27

©Mitsubishi Electric Corporation

‘ MITSUBISHI
AN ELECTRIC

Changes for the Better

Fault Vulnerability Detection

©Mitsubishi Electric Corporation 9/2 7

‘ MITSUBISHI

FVD Processing Flow of Fault Vulnerability Detection (FVD) &% ELECTRC

Changes for the Better

Run binary simulating fault and check if it satisfies success condition

1010 - N
0101
/ #01 0x0834 R0 48 2d 9 | -
Binary 3 #02 0x0838 0c bo 8d
M #03 0x083c 64 40 of -
O Ml 04 0x0840 04 40 8f _Sim with fault
N Ml #05 0x0844 b9 ff ff
Fault model Yes R
@ No Vulnerability
N Y,

Success condition
[Input] Fault Vulnerability Detection Tool [Output]

« Vulnerabilities can be comprehensively detected by injecting faults into all instructions and
verifying success conditions

« Example) Password authentication, DFA on AES

10/27

©Mitsubishi Electric Corporation

‘ MITSUBISHI

FVD Characteristics of FVD Tools &8 ELECTRIC

Changes for the Better

Differences in tools make common evaluation difficult

Architecture | Platform | Success condition

FaultFinder ARM / x86 / RISC-V Unicorn (ISE) Target addr,, reg/mem
FaultArm ARM / x86 - (Parser) Anti-pattern
Fault-injection-simulation* ARM angr Target addr.

ARCHIE ARM / / RISC-V QEMU-system Target addr., reg/mem
ARMORY ARM M-ulator (ISE) Target addr.

Chaos Duck ARM / x86 Native/ QEMU-user stdout / exit code
FaultinjectionSimulator* / x86 Native exit code

*Not published as a paper
« Seven 0OSS-based FVD tools selected from GitHub

« Differences:
« Architecture: Even if the architecture is the same, the user binary/system binary differs
« Platform: ISE, QEMU, and native execution are primary
« Success condition: target address, register/memory condition, exit code, -

©Mitsubishi Electric Corporation 11 / 27

‘ MITSUBISHI
AN ELECTRIC

Changes for the Better

Rehosting

©Mitsubishi Electric Corporation 1 2/2 7

Re
hosting

Problem: ISE-based Tools Lack Memory Reproducibility

‘ MITSUBISHI
AN ELECTRIC

Changes for the Better

ISE-based tools are fast but have low fidelity

ﬁ Unicorn

(ISE-base tool)

CPU Emulation

QEMU

< CPU Emulation

/O Interface,
Peripheral

ELF loader,

Dynamic relocation

User binary only

Alias region,
Architecture-specific region

System binary only

« ISE-based tools achieves high speed by emulating only execution of instruction set

« Omitted functions cause differences in memory state at entry point (main())

— Leads to false positives and false negatives in vulnerability detection

©Mitsubishi Electric Corporation

13/27

hosting

Re :
Proposed: Rehosting

‘ MITSUBISHI
AN ELECTRIC

Changes for the Better

Porting the processor state (memory) during QEMU/native execution

=]

Dump
>_
0101
QEMU g

(or native machine)

¢

Reproduce
code data
Unicorn

(ISE-base tool)
Concept of rehosting

©Mitsubishi Electric Corporation

reg.

-

1. Execute ELF on QEMU

2. Debug ELF with gdb

3. Break at entry point (main())

4. Dump memory (code and memory)

5. Dump CPU state (register)

6. Reproduce CPU state

Typical rehosting flow

14/27

‘ MITSUBISHI
AN ELECTRIC

Changes for the Better

Experiment

©Mitsubishi Electric Corporation 1 5/2 7

Experi - :

P Setup: Cross-Tool Evaluability Design RNy
m e n t Changes for the Better
Case study: “PIN verification” as a common benchmark
« Target: ARMv/m, ARMv7a, x86 Success condition

' ' ‘ (main()) 4
« Fault models: . v 0 . |
Evaluation — <\ cardPin = 1234
« Instruction skipping (IS) target initialize() | userPin = 0000
« Bit-flip on Instruction (BF-I) i
- Bit-flip on Register (BF-R) verifyPIN()) authenticated =0

« Benchmark program

« PIN verification without countermeasure (VerifyPIN_0)
from FISSC [12]

« Hardcoded userPIN fails in PIN verification

* Program modification:
Support all success conditions
(stdout / reached path / exit code)

[12] L. Dureuil, G. Petiot, M. Potet, T. Le, A. Crohen, and P. de Choudens, “FISSC: A fault injection and simulation secure collection,” in Computer Safety,
Reliability, and Security - 35th International Conference, SAFECOMP 2016, Trondheim, Norway, September 21-23, 2016, Proceedings, 2016, pp. 3-11.

©Mitsubishi Electric Corporation

j compare(al,

a2, size)

secret()

<] Target address

show result

A A
(retum)

‘ stdout

‘ Exit code

16/27

Experi _ . ¢ wmiTsuBiSHI
P Evaluation Metrics &N ELECTRIC
m e n t Changes for the Better

Common vulnerability detection approach: maximizing recall while maintaining high precision

Metrics 1: Missed Faults

« Proportion of detected cases out of all vulnerabilities Actual
TRUE FALSE
. Recall = —=
TP+FN
Metrics 2: Effective Faults § TP FP
- Proportion of actual vulnerabilities out of all detected cases s — | TruePositive | False Positive
TP -g
* Precision = P a
Ll
Ground Truth 3 FN TN
T False Negative | True Negative
« Integrating vulnerabilities reported by each tool, followed by

manual analysis

©Mitsubishi Electric Corporation 1 7/ 27

Experi
ment

Result: Modell Instruction Skipping

‘ MITSUBISHI
AN ELECTRIC

Changes for the Better

FaultFinder run on multi architectures with high performance and fast speed

« Rehosting eliminates all FNs,
increasing recall up to 100%, while
decreasing precision in some cases

- Rehosting keeps fast speed (low vra

overhead)

« ISE-based tools are >50x faster than

QEMU-based tools ARM

v/im

ISE QEMU | Others
Both time and recall Good Bad x86
o aregood
Mitsubishi Eecic Cop * Only tools proposed in papers

Tool* Time [s] Recall Precision
FaultFinder (rehost) | 1700 100
T B - o oy

FaultArm 2.0 0.59 0.29
Chaos Duck 107.0 0.88 1.00
FaultFinder (rehost) 1.7 1.00 0.89
T e B e VY
FaultArm 1.9 0.31 0.31
ARCHIE 173.7 1.00 0.89
ARMORY 04 0.75 1.00
 FaultFinder (rehost) 14 1.00 1.00 :
- FaultFinder 13 1.00 1.00 :
T e e
Chaos Duck 12.4 0.93 1.00

Experi

Result: Model2,3 Bit-Flip on Instruction/Register

‘ MITSUBISHI
AN ELECTRIC

men t Changes for the Better
(Same trend) FaultFinder run on multi architectures with high performance and fast speed
(repeated) Tool* Time [s] | Recall | Precision
« Rehosting eliminates all FNs, ARM FaUItFmder(rehOSt) 89 O 99 095
increasing recall up to 100%, while Sl Faulthinder — 0.80 0.89
decreasing precision in some cases D |50 AbuCK 3883.9 0.85 0.96
: FaultFinder (rehost) 4.4 1.00 0.85
. Rehosting keeps fast speed (low ARM ey
overhead) VM ARCHIE 8661.5 1.00 0.85
« ISE-based tools are >400x faster than o ARMORY 0.4 0.70 0.93
QEMU-based tools - FaultFinder (rehost) 7.4 1.00 0.99
ARM " FaultFinder 43| 097 1.00
< oemy | others ;Z_r; T 7] e p—
S E ARMORY 0.4 0.62 1.00
Both time and recall Good Bad
N aregood
e e o * Only tools supporting bit-flip 19/27

‘ MITSUBISHI
AN ELECTRIC

Changes for the Better

Misclassification Analysis
& Limitation

©Mitsubishi Electric Corporation 2 0/2 7

Discuss
on Misclassification Analysis CI“'%'EES&‘%E'%H'
Misclassification fall into 10 patterns

Tool FP FN | Init. state Invalid access Write attribute Unimplemented inst. Others
FaultFinder (rehost) | 56 1 0 0 56 1 0
FaultFinder 30 88 110 1 6 1 0
Chaos Duck 10 47 0 0 0 57
ARCHIE 59 0 0 0 41 0 18
ARMORY 11 133 68 1 1 3 71

- Initialization state / Invalid access: inaccurate memory/register init. and memory mapping

— Rehosting

- Write attribute: Rehosting increased FPs due to the ability to correctly recognize memory regions
— Implementation of memory attributes

« Unimplemented instruction: ISE omits some specific instructions (e.g., ARM NEON).
— Manual verification

©Mitsubishi Electric Corporation

21/27

DISCUSS ey Takeaways o
I O n Changes for the Better
6 design principles for FVD
4 N e N [/ i ™
nnnns : ADD nllas

- z - - : MOV :
i[m]i-:[m]: R-X
) TIIIL) T i RN_ andd ?

\ J J \STR J

1. Initial state

{%@@I‘

Return stdout

2. Memory map
& attribute

/

4. Address reachability
(success condition)

©Mitsubishi Electric Corporation

&>Ba

Static

Dynamic

5. Dynamic analysis

3. Unimplemented inst.
& arch.-specific feature

4)

\Exec. trace

6. Execution trace

Discuss
: Applicability & Limitation e M5B

I O n Changes for the Better

Ground truth depends on 1) 7 FVD tools capabilities and 2) execution platform

Rehosting Applicability

» Applicable to any ISE-based tools that support pre-execution memory modification
— ARMORY does not have such interface

Limitation
1. Tool dependency

« Our ground truth is limited by the detection capabilities of the selected tools
2. Execution platform dependency

« Our ground truth depends on I) native execution for x86, 1) QEMU for ARM

©Mitsubishi Electric Corporation

23/27

‘ MITSUBISHI
AN ELECTRIC

Changes for the Better

Conclusion

©Mitsubishi Electric Corporation 2 4/2 7

) ¢ wmTsuBISHI
Conclusion A ELECTRIC

Changes for the Better

Challenge: 1) Speed vs. Fidelity for FVD tools. 2) No benchmark dataset.

Contributions:
* Rehosting improved fidelity in ISE-based tool
* We created dataset "FIVBinBench” and it is available on GitHub[*]

« Comparative analysis of existing OSS-based FVD tools

» Conclusion:
FaultFinder with rehosting offers the best balance of speed and performance

Future work
[*] https://github.com/pythOn14n/FIVBinBench
* Implement memory attribute on FaultFinder

* More complex programs such as cryptography and VerifyPIN with countermeasure

©Mitsubishi Electric Corporation 2 5/2 7

FIVBinBench e MTSUBISH

Changes for the Better

Fault Injection Vulnerability Binary Benchmark

Main components

« Dataset including 1) binary and 2) result

 Tools including FaultFinder with rehosting

Instruction information Detection results Ground truth
IP / code / opcode in each tool with misclass. type

IP oprand comment FaultARM fault-injection-simulation ChaosDuck FaultFinder (rehosting) FaultFinder Grand Truth Type

00000598 <byteArrayCompare:>:

e52db004 {fp} @ (str fp, [sp, #-411)

e54b3015 s r3, [fp, #-21]

e3a03000 3, #0

e50b3008 s r3, [fp, #-8] Initial state

Example of result (TSV format) 26/27

©Mitsubishi Electric Corporation

MITSUBISHI

A ELECTRIC

Changes for the Better

	Improving Fault Vulnerability Detection via Rehosting and Comparative Analysis of�Open-source Tools
	This Talk in Brief
	Outline
	Background
	Fault Injection Attack (FIA) against Actual Product
	FIA Resistance in Software Design Phase
	Challenges
	Our Contributions
	Fault Vulnerability Detection
	Processing Flow of Fault Vulnerability Detection (FVD)
	Characteristics of FVD Tools
	Rehosting
	Problem: ISE-based Tools Lack Memory Reproducibility
	Proposed: Rehosting
	Experiment
	Setup: Cross-Tool Evaluability Design
	Evaluation Metrics
	Result: Model1 Instruction Skipping
	Result: Model2,3 Bit-Flip on Instruction/Register
	Misclassification Analysis�& Limitation
	Misclassification Analysis
	Key Takeaways
	Applicability & Limitation
	Conclusion
	Conclusion
	FIVBinBench
	スライド番号 27

