
©Mitsubishi Electric Corporation

I m p r o v i n g F a u l t V u l n e r a b i l i t y D e t e c t i o n v i a

R e h o s t i n g a n d C o m p a r a t i v e A n a l y s i s o f

O p e n - s o u r c e T o o l s

F DTC 2 0 2 5

 1 4 t h S e p t e m b e r 2 0 2 5 i n K u a l a L u m p u r, M a l a y s i a

S ho e i N a s h i mo to *

* M i t s u b i s h i E l e c t r i c C o r p o ra t io n

This presentation is based on results obtained from a project, JPNP24003, commissioned by
the New Energy and Industrial Technology Development Organization (NEDO).

©Mitsubishi Electric Corporation

T h i s Ta l k i n B r i e f

1) Fast but low fidelity

SPEED

2) Lack of benchmark dataset

Vuln!

FIDELITY

Challenges

1) Rehosting improves fidelity 2) Creation of labeled dataset

SPEED FIDELITY

Solution

Results: Rehosting achieves near-perfect recall (99%-100%) while keeping high speed

2/27

©Mitsubishi Electric Corporation

O u t l i n e

• Background

• Fault Vulnerability Detection

• Rehosting

• Experiment

• Discussion

• Conclusion

3/27

©Mitsubishi Electric Corporation

B a c k g r o u n d

4/27

©Mitsubishi Electric Corporation

Fau l t In j e c t i on At t ac k (F IA) ag a i n s t Ac t u a l P rod u c t
Back

ground

If software is secure, attack hardware

Game console [5] Cryptocurrency wallet [6]

[4] C. Werling, N. K¨uhnapfel, H. N. Jacob, and O. Drokin, “Jailbreaking an Electric Vehicle in 2023 or What It Means to Hotwire Tesla’s x86-Based Seat Heater,” BlackHat Asia, 2023.
[5] plutoo, derrek and naehrwert, “Console Security – Switch”, 2017
[6] J. Datko, C. Quartier, and K. Belyayev, “Breaking Bitcoin Hardware Wallets: Glitches cause stitches!” DEF CON 2017, 2017

Automotive unit [4]

• Software security for embedded devices is improving

• Attackers seek the next “weakest point,” targeting fault attacks

5/27

©Mitsubishi Electric Corporation

Why software-based detection?

• Scalable, reproducible, cost-effective
comparing to physical FIA

Why binary?

• Higher-level languages diverge from physical mechanisms

• Binary is the closest to hardware within the software layer

FIA Re s i s t an c e i n S o f t ware D e s i g n P h ase
Back

ground

Increasing demand for fault vulnerability detection (FVD) from binary

Concept of FVD from binary

Vuln!

6/27

©Mitsubishi Electric Corporation

1. Trade-offs between speed and fidelity:

• Instruction Set Emulation (ISE)-based tools prioritize speed by
omitting system-level emulation (QEMU)

• This simplification leads to inaccurate memory and register
initialization, causing false positives and negatives

2. Lack of Standardized Benchmarks:

• Lack of ground-truth labeled datasets makes fair and
reproducible tool comparison difficult

• This is due to the difficulty in manual verification of
“all fault patterns”

Ch a l l e n g e s
Back

ground

1) Speed vs. Fidelity, 2) Lack of benchmark dataset

1) Fast but low fidelity

SPEED FIDELITY

2) Lack of benchmark dataset

7/27

©Mitsubishi Electric Corporation

Vuln!
2) Creation of labeled

1) Rehosting improves fidelity

SPEED FIDELITY

1. Rehosting for Improved Fidelity:

• Introduced a rehosting technique to mitigate misclassification in
ISE-based tools (e.g., FaultFinder).

• Accurately reproduces memory and register states, ensuring
faithful system initialization

2. Labeled Benchmark Creation and Comparative Analysis

• Constructed a labeled benchmark dataset by manually verifying
vulnerabilities from multiple tools

• This significantly reduces verification cost and enables systematic
misclassification pattern identification

• This benchmark enables to evaluate the speed and detection
performance of FVD tools

Ou r Con t r i b u t i on s
Back

ground

1) Rehosting for FVD, 2) Integration of results from multiple tools

8/27

©Mitsubishi Electric Corporation

F a u l t V u l n e r a b i l i t y D e t e c t i o n

9/27

©Mitsubishi Electric Corporation

• Vulnerabilities can be comprehensively detected by injecting faults into all instructions and
verifying success conditions

• Example) Password authentication, DFA on AES

Proc e ss i n g F l ow o f Fau l t Vu l n e rab i l i t y D e te c t i on (FVD)FVD

Run binary simulating fault and check if it satisfies success condition

Binary

Success condition

Fault model

Vulnerability

Fault Vulnerability Detection Tool

#01 0x0834 30 48 2d e9
#02 0x0838 0c b0 8d e2
#03 0x083c 64 40 9f e5
#04 0x0840 04 40 8f e0
#05 0x0844 b9 ff ff eb
……

Success?

Sim with fault

Yes

No

【Input】 【Output】

10/27

©Mitsubishi Electric Corporation

• Seven OSS-based FVD tools selected from GitHub

• Differences:
• Architecture: Even if the architecture is the same, the user binary/system binary differs
• Platform: ISE, QEMU, and native execution are primary
• Success condition: target address, register/memory condition, exit code, …

Ch arac te r i s t i c s o f FVD Too l sFVD

Differences in tools make common evaluation difficult

Tool Architecture Platform Success condition
FaultFinder ARM / x86 / RISC-V Unicorn (ISE) Target addr., reg/mem
FaultArm ARM / x86 - (Parser) Anti-pattern
Fault-injection-simulation* ARM angr Target addr.
ARCHIE ARM / / RISC-V QEMU-system Target addr., reg/mem
ARMORY ARM M-ulator (ISE) Target addr.
Chaos Duck ARM / x86 Native/ QEMU-user stdout / exit code
FaultInjectionSimulator* / x86 Native exit code

*Not published as a paper

11/27

©Mitsubishi Electric Corporation

R e h o s t i n g

12/27

©Mitsubishi Electric Corporation

Unicorn
(ISE-base tool)

QEMU

• ISE-based tools achieves high speed by emulating only execution of instruction set

• Omitted functions cause differences in memory state at entry point (main())
→ Leads to false positives and false negatives in vulnerability detection

Prob l e m : ISE -b ase d Too l s Lac k Me m or y Re p rod u c i b i l i t y
Re

hosting

ISE-based tools are fast but have low fidelity

CPU Emulation
I/O Interface,

Peripheral

ELF loader,
Dynamic relocation

Alias region,
Architecture-specific region

System binary onlyUser binary only

CPU Emulation

13/27

©Mitsubishi Electric Corporation

Prop ose d : Re h os t i n g
Re

hosting

Porting the processor state (memory) during QEMU/native execution

Concept of rehosting

1. Execute ELF on QEMU

2. Debug ELF with gdb

3. Break at entry point (main())

4. Dump memory (code and memory)

5. Dump CPU state (register)

6. Reproduce CPU state

Typical rehosting flow

ELF

Unicorn
(ISE-base tool)

QEMU
(or native machine)

Bin
R0

R1

R2

Dump

Reproduce
code data reg.

14/27

©Mitsubishi Electric Corporation

E x p e r i m e n t

15/27

©Mitsubishi Electric Corporation

• Target: ARMv7m, ARMv7a, x86

• Fault models:
• Instruction skipping (IS)

• Bit-flip on Instruction (BF-I)

• Bit-flip on Register (BF-R)

• Benchmark program
• PIN verification without countermeasure (VerifyPIN_0)

from FISSC [12]

• Hardcoded userPIN fails in PIN verification

• Program modification:
Support all success conditions
(stdout / reached path / exit code)

Se t u p : C ross -Too l E va l u ab i l i t y D e s i g n
Experi
ment

Case study: “PIN verification” as a common benchmark

[12] L. Dureuil, G. Petiot, M. Potet, T. Le, A. Crohen, and P. de Choudens, “FISSC: A fault injection and simulation secure collection,” in Computer Safety,
Reliability, and Security - 35th International Conference, SAFECOMP 2016, Trondheim, Norway, September 21-23, 2016, Proceedings, 2016, pp. 3–11.

Evaluation
target

16/27

©Mitsubishi Electric Corporation

Metrics 1: Missed Faults

• Proportion of detected cases out of all vulnerabilities

• 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

Metrics 2: Effective Faults

• Proportion of actual vulnerabilities out of all detected cases

• 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

Ground Truth

• Integrating vulnerabilities reported by each tool, followed by
manual analysis

E va l u a t i on Me t r i c s
Experi
ment

Common vulnerability detection approach: maximizing recall while maintaining high precision

TRUE FALSE

TR
UE TP

True Positive
FP

False Positive

FA
LS

E FN
False Negative

TN
True Negative

Actual

Pr
ed

ic
t

17/27

©Mitsubishi Electric Corporation

Re su l t : Mod e l 1 In s t ru c t i on Sk i p p i n g
Experi
ment

FaultFinder run on multi architectures with high performance and fast speed

Tool* Time [s] Recall Precision
FaultFinder (rehost) 1.7 1.00 1.00
FaultFinder 1.6 0.88 0.94
FaultArm 2.0 0.59 0.29
Chaos Duck 107.0 0.88 1.00
FaultFinder (rehost) 1.7 1.00 0.89
FaultFinder 1.6 0.94 1.00
FaultArm 1.9 0.31 0.31
ARCHIE 173.7 1.00 0.89
ARMORY 0.4 0.75 1.00
FaultFinder (rehost) 1.4 1.00 1.00
FaultFinder 1.3 1.00 1.00
FaultArm 1.8 0.07 0.20
Chaos Duck 12.4 0.93 1.00

ARM
v7a

ARM
v7m

x86

• Rehosting eliminates all FNs,
increasing recall up to 100%, while
decreasing precision in some cases

• Rehosting keeps fast speed (low
overhead)

• ISE-based tools are >50x faster than
QEMU-based tools

* Only tools proposed in papers

Good Bad

ISE QEMU Others

18/27

Both time and recall
are good

©Mitsubishi Electric Corporation

Re su l t : Mod e l 2 ,3 B i t - F l i p on In s t ru c t i on /Re g i s te r
Experi
ment

(Same trend) FaultFinder run on multi architectures with high performance and fast speed

Tool* Time [s] Recall Precision
FaultFinder (rehost) 8.9 0.99 0.95
FaultFinder 5.2 0.80 0.89
Chaos Duck 3883.9 0.85 0.96
FaultFinder (rehost) 4.4 1.00 0.85
FaultFinder 2.8 0.92 1.00
ARCHIE 8661.5 1.00 0.85
ARMORY 0.4 0.70 0.93
FaultFinder (rehost) 7.4 1.00 0.99
FaultFinder 4.3 0.97 1.00
ARCHIE 8401.7 1.00 0.90
ARMORY 0.4 0.62 1.00

ARM
v7a
BF-I

ARM
v7m
BF-I

ARM
v7m
BF-R

* Only tools supporting bit-flip

(repeated)

• Rehosting eliminates all FNs,
increasing recall up to 100%, while
decreasing precision in some cases

• Rehosting keeps fast speed (low
overhead)

• ISE-based tools are >400x faster than
QEMU-based tools

Good Bad

ISE QEMU Others

19/27

Both time and recall
are good

©Mitsubishi Electric Corporation

M i s c l a s s i f i c a t i o n A n a l y s i s
& L i m i t a t i o n

20/27

©Mitsubishi Electric Corporation

• Initialization state / Invalid access: inaccurate memory/register init. and memory mapping
→ Rehosting

• Write attribute: Rehosting increased FPs due to the ability to correctly recognize memory regions
→ Implementation of memory attributes

• Unimplemented instruction: ISE omits some specific instructions (e.g., ARM NEON).
→ Manual verification

Mi sc l a ss i f i c a t i on An a l y s i s
Discuss

ion

Misclassification fall into 10 patterns

Tool FP FN Init. state Invalid access Write attribute Unimplemented inst. Others
FaultFinder (rehost) 56 1 0 0 56 1 0
FaultFinder 30 88 110 1 6 1 0
Chaos Duck 10 47 0 0 0 0 57
ARCHIE 59 0 0 0 41 0 18
ARMORY 11 133 68 1 1 3 71

21/27

©Mitsubishi Electric Corporation

Ke y Take aways
Discuss

ion

6 design principles for FVD

1. Initial state

5. Dynamic analysis

R-X
RW-

2. Memory map
& attribute

3. Unimplemented inst.
& arch.-specific feature

AliasADD
MOV
vqadd
STR

？

PATH Return stdout

4. Address reachability
(success condition)

Exec. trace

data

All inst.

6. Execution trace
Dynamic Static

22/27

©Mitsubishi Electric Corporation

Rehosting Applicability

• Applicable to any ISE-based tools that support pre-execution memory modification
→ ARMORY does not have such interface

Limitation

1. Tool dependency

• Our ground truth is limited by the detection capabilities of the selected tools

2. Execution platform dependency

• Our ground truth depends on I) native execution for x86, II) QEMU for ARM

Ap p l i c ab i l i t y & L i m i t a t i on
Discuss

ion

Ground truth depends on 1) 7 FVD tools capabilities and 2) execution platform

23/27

©Mitsubishi Electric Corporation

C o n c l u s i o n

24/27

©Mitsubishi Electric Corporation

Challenge: 1) Speed vs. Fidelity for FVD tools. 2) No benchmark dataset.

Contributions:
• Rehosting improved fidelity in ISE-based tool

• We created dataset “FIVBinBench” and it is available on GitHub[*]

• Comparative analysis of existing OSS-based FVD tools

• Conclusion:
FaultFinder with rehosting offers the best balance of speed and performance

Future work

• Implement memory attribute on FaultFinder

• More complex programs such as cryptography and VerifyPIN with countermeasure

C o n c l u s i o n

[*] https://github.com/pyth0n14n/FIVBinBench

25/27

©Mitsubishi Electric Corporation

Main components

• Dataset including 1) binary and 2) result

• Tools including FaultFinder with rehosting

FIVB i n B e n c h

Fault Injection Vulnerability Binary Benchmark

Instruction information
IP / code / opcode

Detection results
in each tool

Ground truth
with misclass. type

Example of result (TSV format) 26/27

	Improving Fault Vulnerability Detection via Rehosting and Comparative Analysis of�Open-source Tools
	This Talk in Brief
	Outline
	Background
	Fault Injection Attack (FIA) against Actual Product
	FIA Resistance in Software Design Phase
	Challenges
	Our Contributions
	Fault Vulnerability Detection
	Processing Flow of Fault Vulnerability Detection (FVD)
	Characteristics of FVD Tools
	Rehosting
	Problem: ISE-based Tools Lack Memory Reproducibility
	Proposed: Rehosting
	Experiment
	Setup: Cross-Tool Evaluability Design
	Evaluation Metrics
	Result: Model1 Instruction Skipping
	Result: Model2,3 Bit-Flip on Instruction/Register
	Misclassification Analysis�& Limitation
	Misclassification Analysis
	Key Takeaways
	Applicability & Limitation
	Conclusion
	Conclusion
	FIVBinBench
	スライド番号 27

