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O% Background - Hardware security

1 Fault Attack Techniques
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Body Bias Injection (BBI)

1 Principle: Voltage pulse injection on IC substrate
1 Potential Disruptions :

- Power supply networks

- Clock signals

- Control & data signals




OO The state of the art of Body Bias Injection

20 1 1 Yet Another Fault Injection Technique : by Forward Body Biasing Injection
Invention de cette technique - Attaque de Bellcore sur RSA

20 1 2 Voltage spikes on the substrate to obtain timing faults
Fault nature on digital circuits

20 1 6 Body biasing injection attacks in practice (Lumped model for dual-well substrates)
First physical model

2020 Low-cost body biasing injection (BBI) attacks on WLCSP devices
Attaque on AES

2022 Breaking a Recent SoC’s Hardware AES Accelerator Using Body Biasing Injection
Attaque on AES

2023 A better practice for Body Biasing Injection
Injection practive improvement

My Objective: To establish a model that characterizes the impact of BBI on program control flow.
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Program Control Flow

1 Order in which statements and instructions are executed in a program.
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adds r3, #1

Idr r3, [r7,#4]
cmp r3, #3
ble entry_loop

>3

High-level l l
language if else switch [ while ] [ for ] [ break ] [continu]
case

liCode: ... entry_loop: ... entry_loop: ...

Idr r3, [r7,#4]

cmp r3, #3

ble 0x8000c00

liCode : ... /ICode : ...

Assembly iCode: .. /iCode: ...

cmp r3, #3
ble break_loop

bl entry_loop

>3

Ilbreak_loop : ...
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O% Program control flow attack
1 Program control flow attack : Alters the normal execution path of a program

(1 Faults Inside the Processor
Examples:
- Loading attacker-controlled values into the Program Counter (PC)
- Instruction skipping / replay

1 Faults between Program Memory and the Processor
Examples :
- Corrupt instruction cache/buffer contents
- Disrupt instruction cache/buffer updates

Can BBI also generate exploitable faults in program control flow ?




O% Target architecture

1 Target microcontroller : STM32F439, ARM Cortex-M4 (3-stage pipeline)
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1  Current Buffer: Stores the instruction line currently requested by the CPU

(1 AHB Bus Matrix: Fetches instructions (32 bits at a time) from the Current Buffer

(1 Prefetch Buffer: Holds the next consecutive instruction line



O% Study 1n 2 Phases

1 Phase 1 : Sequential Test Code

- How BBI affects the normal operation of the CPU pipeline and FLASH accelerator when
there’s no branch involved?
- Which stage of the sequential execution flow is most likely to be affected by BBI ?

1 Phase 2 : Single Branch Test Code

- What kind of phenomenon can be generated when there is a branch operation involved ?



O% Sequential Execution
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O% Sequential Execution

1 Prefetch buffer enabled

Fault Classification

A ” ‘ 4 cycles ‘ l —Goubie A Skipping: The instruction is skipped.
i (1 Replay: The instruction is replayed
B | [ ]
IC [ [
P-buffer] N-1 N N+1 N+2
C-buffer] N-2 N-1 N N+1
332.8 374.4 416.0 457.6 499.2 540.8 582.4 624.0 665.6

Injection time (ns)
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O% Sequential Execution

1 Prefetch buffer enabled
Fault Classification

A l) \4cycles‘ \ == (1 Skipping: The instruction is skipped.

1 (1 Replay: The instruction is replayed
IB | lm play play
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O% Sequential Execution

1 Conclusion for the first phase: In sequential code execution, BBI-induced faults are
observed, primarily attributable to update failures in the instruction buffers of the FLASH

accelerator.

1 With the prefetch buffer enabled, the update of the prefetch buffer represents the
most vulnerable stage, whereas the current buffer is seldom impacted.

1 Conversely, when the prefetch buffer is disabled, the update of the current buffer
emerges as the most vulnerable stage of the program flow.

1 Question : Can the same phenomenon happen to non-sequential control structure

execution ?
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O% Single Branch Control Structure

1 Target Conditional Branch Operation
z (1 The branch under consideration transfers control from line
£ L kR N to line N+3.
var>3 (1 The fault injection is performed during the execution of this
branch operation.

line N+2 | line N+1

ADD x 4

[

D
ADD x 4

x

D

line N+3

target_instruction
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O% Single Branch Control Structure

1 Prefetch buffer enabled

Comrect P-buffer update process

Lot |
+
z-

C-buffer P-buffer FLASH array
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z z
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N+2

Line N+3 transferred from
FLASH array to P-buffer

C-buffer P-buffer FLASH array
= Y =2 |F|F| 7
= Zz|z|=

Line N+4 transferred from FLASH

array to P-buffer

Line N+3 transferred from P-buffer
to C-buffer

C-buffer P-buffer FLASH array

N+3

N
N+1
N+2
N+3
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O% Single Branch Control Structure

1 Prefetch buffer enabled

Comrect P-buffer update process

Faulty P-buffer update process
C-buffer P-buffer FLASH array C-buffer P-buffer FLASH array
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O% Single Branch Control Structure
1 Prefetch buffer enabled

Correct P-buffer update process

Faulty P-buffer update process
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Line N+1 transferred from P-buffer | Line N+4 transferred from FLASH
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Line N+1 is executed illegally instead of N+3, so N+3 is skipped. Both N+1 and N+3 contain

arithmetic instructions; therefore, in this scenario, the primary impact of the fault is the generation
of incorrect arithmetic results.




O% Single Branch Control Structure

1 Prefetch buffer disabled

(a) Correct C-buffer update process

(b) Faulty C-buffer update process

C-buffer P-buffer FLASH array C-buffer P-buffer FLASH array
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Fail to transfer line N+3 from
Line N+3 transfered from FLASH FLASH array to C-buffer. Line N x Attack
array to C-buffer remains in C-buffer and is
executed instead of N+3
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Line N is replayed, line N+3 1s skipped.
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O% Single Branch Control Structure

1 Question: What happens when a branch instruction is
replayed illegally ?

BNE var <3

targt_Instruction Line N includes not only arithmetic instructions but also the
branch instruction that has juste been executed, which means
the branch will also be replayed, prompting the question of
how the system behaves in this case.

line N

line N+2 | line N+1

line N+3
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OO Single Branch Control Structure

@

line N<

line N+3<

line N+4<

—

ADD

strr3, [r7 #4]

cmp r3, #3

y

BNE destination_instruction

PC1 + br_offset

y

destination_instruction

ADD

ADD

(1 Branch instruction

Add a fixed offset (br_offset) to the current Program Counter (PC).
“br_offset” is coded in the instruction “BNE destination instruction”.

The CPU only see br_offset but not the absolute destination address.
The destination address is calculated by :

Destination address = PC1 (current PC) + br_offset

19
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Single Branch Control Structure
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line N <

line N+3<

line N+4<

(1 Normal Execution

ADD

strr3, [r7,#4]

cmp r3, #3

BNE destination_instruction

\ 4

PC1 + br_offset

destination_instruction

ADD

4

Disrupted Execution

ADD

strr3, [r7 #4]

cmp r3, #3

BNE destination_instruction

BNE destination_instruction

\ 4

ADD

i

>~ line N

-/

PC1 + br_offset

_

PC2 + br_offset

line N which is
considered by the
system as N+3

line N+6
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(JO)  Fault Model Conclusion

@

1 Conclusion for the first phase (sequential test code) :
During the execution of sequential code, BBI can induce control flow faults, primarily
caused by update failures in the instruction buffers within the FLASH accelerator.

Body Bias Injection affects a common path that delivers instructions from the
|:> FLASH to the instruction buffers.

FLASH Accelerator
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O% Fault Model Conclusion

(1 Conclusion for the first phase (sequential test code) :
During the execution of sequential code, BBI can induce control flow faults, primarily
caused by update failures in the instruction buffers within the FLASH accelerator.

(1 When the prefetch buffer is enabled, the most vulnerable stage is the update of
the prefetch buffer, the current buffer is rarely affected.

(1 When the prefetch buffer is disabled, the most vulnerable stage is the update of
the current buffer.

(1 Conclusion for the second phase (test code with branch) :
1 Root cause of faults: Failure to update instruction buffer
1 Impact depends on buffer content before/after update:
Arithmetic instructions — Arithmetic errors
Branch instructions — Illegal branch / Control flow deviation
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Conclusion

Sequential Code
Program Control Single Branch
Flow Study Operation
Loop Operation

FLASH accelerator
instruction buffer
update failure

Utilize the fault model to
attack non-sequential
control structure

Depending on the types of

J L

instructions in the lines involved

= Data computation errors
= Break the loop execution
= Makethe loop fall into an infinite state

m Attack a software implementation of crypto-
algorithm

J L

This paper
-

>~ Further study

>~ Eventual study
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Fault
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Spatial genericity of obtained results

1 The fault is easy to generate in a large region on the chip

7 == Other
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o o == Double
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