FDTC 2025
' W Fault Diagnosis and
Tolerance in Cryptography

Fault Analysis through Body Bias Injection on the
FLASH Memory Accelerator of a Microcontroller

Ziling LTAO Florent BRUGUIER Philippe MAURINE

14/09/2025

BB UNIVERSITE ot
QA% MONTPELLIER 1

LIRMM

O% Background - Hardware security

1 Fault Attack Techniques

Laser {3
|)~/

Faulty

Input / output 1 Force incorrect computations
ypass security ¢ efz S
\Correct 1 Extract cryptographic key

output

D . @ Voltage glitch

Body Bias Injection (BBI)

1 Principle: Voltage pulse injection on IC substrate
1 Potential Disruptions :

- Power supply networks

- Clock signals

- Control & data signals

OO The state of the art of Body Bias Injection

20 1 1 Yet Another Fault Injection Technique : by Forward Body Biasing Injection
Invention de cette technique - Attaque de Bellcore sur RSA

20 1 2 Voltage spikes on the substrate to obtain timing faults
Fault nature on digital circuits

20 1 6 Body biasing injection attacks in practice (Lumped model for dual-well substrates)
First physical model

2020 Low-cost body biasing injection (BBI) attacks on WLCSP devices
Attaque on AES

2022 Breaking a Recent SoC’s Hardware AES Accelerator Using Body Biasing Injection
Attaque on AES

2023 A better practice for Body Biasing Injection
Injection practive improvement

My Objective: To establish a model that characterizes the impact of BBI on program control flow.

O
e

Program Control Flow

1 Order in which statements and instructions are executed in a program.

Control

Statements
(e —

Iteration
Statements

Jumping

Statements

Conditional
Statements

_ stements
]

adds r3, #1

Idr r3, [r7,#4]
cmp r3, #3
ble entry_loop

>3

High-level l l
language if else switch [while] [for] [break] [continu]
case

liCode: ... entry_loop: ... entry_loop: ...

Idr r3, [r7,#4]

cmp r3, #3

ble 0x8000c00

liCode : ... /ICode : ...

Assembly iCode: .. /iCode: ...

cmp r3, #3
ble break_loop

bl entry_loop

>3

Ilbreak_loop : ...

Hardware

Program memory

Memory Interface

Immediate and
branch target

isBranchTaken
B A
oy | Branch [+ ‘S::‘
unit L | o
ALY [LisUBranch |~
har isLd
L R TR =
Data memory Memory isSt. 1
uni e e o s St

O% Program control flow attack
1 Program control flow attack : Alters the normal execution path of a program

(1 Faults Inside the Processor
Examples:
- Loading attacker-controlled values into the Program Counter (PC)
- Instruction skipping / replay

1 Faults between Program Memory and the Processor
Examples :
- Corrupt instruction cache/buffer contents
- Disrupt instruction cache/buffer updates

Can BBI also generate exploitable faults in program control flow ?

O% Target architecture

1 Target microcontroller : STM32F439, ARM Cortex-M4 (3-stage pipeline)

FLASH Accelerator
— |
<4}
ﬁ Ellc 4 2
x =2 = _g ocR
1bus | § < icopE|| 22|12t
(1] 1
ARM — =g 5||&c|l2E&<
0 - .
2 — — Q@ n 9 X 128-bit read
Cortex g 5 EJ 93 S interface FLASH
@ o
V4 =z
D-bus f DCODE Data cache lines
«” 8 x 128 bits

1 Current Buffer: Stores the instruction line currently requested by the CPU

(1 AHB Bus Matrix: Fetches instructions (32 bits at a time) from the Current Buffer

(1 Prefetch Buffer: Holds the next consecutive instruction line

O% Study 1n 2 Phases

1 Phase 1 : Sequential Test Code

- How BBI affects the normal operation of the CPU pipeline and FLASH accelerator when
there’s no branch involved?
- Which stage of the sequential execution flow is most likely to be affected by BBI ?

1 Phase 2 : Single Branch Test Code

- What kind of phenomenon can be generated when there is a branch operation involved ?

O% Sequential Execution

P-buffer
C-buffer

Fetch 4
Decode -

Execute -

P-buffer
C-buffer 4

Fetch
Decode -

Execute -

1 Prefetch enabled

instruction buffer update period = 4 cycles

N-2 N-1 N N+1 N+2 N+3 N+4
N-3 N-2 N-1 N N+1 N+2 N+3
IOf(I0OflO[IOfIO]JIO[IO]JIO[IOf[IO}IA[IB]IC]IO]IO}IO[IO]10]10 |10
Oj1I0Of{1I0O|1I0O]I0O|1I0O]I0O|IO(IOJIOf[IA(IB|IC|(IOfIO|IO]|I10O]I0O]I10]IO
[O]I0O[1I0]I0O[IO[IO]IO[IOJIO[IO[IA]IB|ICJIO[IO[IO[I0O[I10[I0 (IO
J Prefetch disabled
instruction buffer update period = 5 cycles
X X : X) X X
N-2 N-1 N N+1 N+2
o [wo]wo]l0 CHECRECEER o[ofiA]B ic [0 [0 fo o o]0l
o [101010 0 [101010 o 10 [A][B IC {10 10|10 0 [101010
o[10|00 o[10|10/l o[|[ia]B ic Jo 10|10 o [10|10

O% Sequential Execution

1 Prefetch buffer enabled

Fault Classification

A ” ‘ 4 cycles ‘ l —Goubie A Skipping: The instruction is skipped.
i (1 Replay: The instruction is replayed
B | []
IC [[
P-buffer] N-1 N N+1 N+2
C-buffer] N-2 N-1 N N+1
332.8 374.4 416.0 457.6 499.2 540.8 582.4 624.0 665.6

Injection time (ns)

10

O% Sequential Execution

1 Prefetch buffer enabled
Fault Classification

A l) \4cycles‘ \ == (1 Skipping: The instruction is skipped.

1 (1 Replay: The instruction is replayed
IB | lm play play

[
IC | [] [

P-buffer] N-1 N N+1 N+2
C-buffer] N-2 N-1 N N+1
332.8 374.4 416.0 457.6 499.2 540.8 582.4 624.0 665.6

Injection time (ns)

[Prefetch buffer disabled

A r \ S cycles ﬂ

L S S | W | W

lc M I
P-buffvef X X X X

C-buffer N-1 N N+1 N+2

520.0 561.6 603.2 644.8 686.4 728.0 769.6 811.2 852.8 894.4 936.0
Injection time (ns)

oNO
R

11

O% Sequential Execution

1 Conclusion for the first phase: In sequential code execution, BBI-induced faults are
observed, primarily attributable to update failures in the instruction buffers of the FLASH

accelerator.

1 With the prefetch buffer enabled, the update of the prefetch buffer represents the
most vulnerable stage, whereas the current buffer is seldom impacted.

1 Conversely, when the prefetch buffer is disabled, the update of the current buffer
emerges as the most vulnerable stage of the program flow.

1 Question : Can the same phenomenon happen to non-sequential control structure

execution ?

L H

\ 4

Control flow disruptions

A 4

Branch instruction

\ 4

Control structure

instruction buffer
o

undat
UPUUL

O% Single Branch Control Structure

1 Target Conditional Branch Operation
z (1 The branch under consideration transfers control from line
£ L kR N to line N+3.
var>3 (1 The fault injection is performed during the execution of this
branch operation.

line N+2 | line N+1

ADD x 4

[

D
ADD x 4

x

D

line N+3

target_instruction

13

O% Single Branch Control Structure

1 Prefetch buffer enabled

Comrect P-buffer update process

Lot |
+
z-

C-buffer P-buffer FLASH array

¥ =
z z
z =z

N+2

Line N+3 transferred from
FLASH array to P-buffer

C-buffer P-buffer FLASH array
= Y =2 |F|F| 7
= Zz|z|=

Line N+4 transferred from FLASH

array to P-buffer

Line N+3 transferred from P-buffer
to C-buffer

C-buffer P-buffer FLASH array

N+3

N
N+1
N+2
N+3

14

O% Single Branch Control Structure

1 Prefetch buffer enabled

Comrect P-buffer update process

Faulty P-buffer update process
C-buffer P-buffer FLASH array C-buffer P-buffer FLASH array
- -— o™~ Ly} - - o™ L]
= + =z |+ [+ [% = + Z|* | * | *
= Z |2 |= =z z|z |z
Line N+3 transferred from Fail to transferline N+3 from Attack
FLASH array to P-buffer FLASH array to P-buffer
C-buffer P-buffer FLASH array C-buffer P-buffer FLASH array
- ? = T|8|2 = T z|[3 (T2
= z|z|= = z |z |z

Line N+3 transferred from P-buffer

Line N+4 transferred from FLASH
to C-buffer

Line N+1 transferred from P-buffer

Line N+4 transferred from FLASH
array to P-buffer to C-buffer instead of line N+3 array to P-buffer nomally
C-buffer P-buffer FLASH array C-buffer P-buffer FLASH ammay
i E BN 2 ¥ 9T
= Zlz|z|=z = Zl1zlz|=2

15

O% Single Branch Control Structure
1 Prefetch buffer enabled

Correct P-buffer update process

Faulty P-buffer update process

C-buffer P-buffer FLASH array

C-buffer P-buffer FLASH array
= . .
= H = H =
Line N+3 transferred from Fail to transferline N+3 from
l FLASH array to P-buffer lx Attack
C-buffer P-buffer FLASH array

FLASH array to P-buffer
C-buffer P-buffer FLASH amay
H H : :
Pz | X PlZ |t
F =

Line N+3 transferred from P-huflerl

N+1
N+2
N+3

N+1
N+2
N+3

N+2
N+3

N+1
N+2
N+3

Line N+4 transferred from FLASH

Line N+1 transferred from P-buffer | Line N+4 transferred from FLASH
to C-buffer array to P-buffer

to C-buffer instead of line N+3 array to P-buffer nommally

C-buffer P-buffer

FLASH array

C-buffer P-buffer FLASH armmay
L] - | ™™
2 zZ1z|2|2

N+1
N+2
N+3

o=
+ P2
I

Line N+1 is executed illegally instead of N+3, so N+3 is skipped. Both N+1 and N+3 contain

arithmetic instructions; therefore, in this scenario, the primary impact of the fault is the generation
of incorrect arithmetic results.

O% Single Branch Control Structure

1 Prefetch buffer disabled

(a) Correct C-buffer update process

(b) Faulty C-buffer update process

C-buffer P-buffer FLASH array C-buffer P-buffer FLASH array
‘ } o~ V& o~
[. - Ll | | . - el
‘ } Pz _:, 22 | | HEZ 'l; =
[I/ N
Fail to transfer line N+3 from
Line N+3 transfered from FLASH FLASH array to C-buffer. Line N x Attack
array to C-buffer remains in C-buffer and is
executed instead of N+3
C-buffer P-buffer FLASH array C-buffer P-buffer FLASH array
| ‘ : B | ! . -
2| Oy |z |Z|2|2 P A HE 2|22
| I | |

Line N is replayed, line N+3 1s skipped.

17

O% Single Branch Control Structure

1 Question: What happens when a branch instruction is
replayed illegally ?

BNE var <3

targt_Instruction Line N includes not only arithmetic instructions but also the
branch instruction that has juste been executed, which means
the branch will also be replayed, prompting the question of
how the system behaves in this case.

line N

line N+2 | line N+1

line N+3

18

OO Single Branch Control Structure

@

line N<

line N+3<

line N+4<

—

ADD

strr3, [r7 #4]

cmp r3, #3

y

BNE destination_instruction

PC1 + br_offset

y

destination_instruction

ADD

ADD

(1 Branch instruction

Add a fixed offset (br_offset) to the current Program Counter (PC).
“br_offset” is coded in the instruction “BNE destination instruction”.

The CPU only see br_offset but not the absolute destination address.
The destination address is calculated by :

Destination address = PC1 (current PC) + br_offset

19

OO

Single Branch Control Structure

@

—

line N <

line N+3<

line N+4<

(1 Normal Execution

ADD

strr3, [r7,#4]

cmp r3, #3

BNE destination_instruction

\ 4

PC1 + br_offset

destination_instruction

ADD

4

Disrupted Execution

ADD

strr3, [r7 #4]

cmp r3, #3

BNE destination_instruction

BNE destination_instruction

\ 4

ADD

i

>~ line N

-/

PC1 + br_offset

_

PC2 + br_offset

line N which is
considered by the
system as N+3

line N+6

20

(JO) Fault Model Conclusion

@

1 Conclusion for the first phase (sequential test code) :
During the execution of sequential code, BBI can induce control flow faults, primarily
caused by update failures in the instruction buffers within the FLASH accelerator.

Body Bias Injection affects a common path that delivers instructions from the
|:> FLASH to the instruction buffers.

FLASH Accelerator

128 bit \
t 128 bit
428 bit FLASH

128-bit
/ Array

- I—C.ache 128-bt)
Lines 4

i

i

32-bit AHB Bus Matrix

128 -bit /{gl-bﬂ

cpu [_l-bus

ICODE

| Current Buffer |

| Prefetch Buffe

]

21

O% Fault Model Conclusion

(1 Conclusion for the first phase (sequential test code) :
During the execution of sequential code, BBI can induce control flow faults, primarily
caused by update failures in the instruction buffers within the FLASH accelerator.

(1 When the prefetch buffer is enabled, the most vulnerable stage is the update of
the prefetch buffer, the current buffer is rarely affected.

(1 When the prefetch buffer is disabled, the most vulnerable stage is the update of
the current buffer.

(1 Conclusion for the second phase (test code with branch) :
1 Root cause of faults: Failure to update instruction buffer
1 Impact depends on buffer content before/after update:
Arithmetic instructions — Arithmetic errors
Branch instructions — Illegal branch / Control flow deviation

O
e

Conclusion

Sequential Code
Program Control Single Branch
Flow Study Operation
Loop Operation

FLASH accelerator
instruction buffer
update failure

Utilize the fault model to
attack non-sequential
control structure

Depending on the types of

J L

instructions in the lines involved

= Data computation errors
= Break the loop execution
= Makethe loop fall into an infinite state

m Attack a software implementation of crypto-
algorithm

J L

This paper
-

>~ Further study

>~ Eventual study

23

LA

Fault

P-buffer 4 N-1 N N+5 N+6 N+7 N+8
C-buffer 4 N-2 N-1 N+4 N+5 N+6 N+7
Fetch ofjlojiojiofiofiofjiofio oo igiofiofjofapio]o|nzfisfio]io|is
Decode ojmwjiojiofjiojiofio 7o jiofiofilopaijio|iofin2p13jio|io
Execute wjiojwojiofiofio 6|17 1010} 191010101210 |10 p112fi13) 10

333.0 416.2 499.4 582.6 665.8 749.0 832.2 915.4 998.6 1081.8

Time [ns)

10 4

Fault

— Fautl

’ —Faut 2
— 33
— Fautd

P-buffer o X
C-buffer A N-1
Fetch 1 ojofiojflo
Decode 1 I0]I10110
MPACMA
Execute 4 10|10 LDR LDBILD+
499.0 582.2 665.4 748.6

831.8

N+4
0|10
17 | 10

112

Time (ns)

915.0

1247.8

26

30000 4 E : Iﬂ : —— Prefetch Enalbed I-Cache Disabled
Prefetch Enalbed I-Cache Enalbed
25000 A
| i] f
% 20000 A \ { ! I \ ﬁ
g | A
E 15000 A ‘ : . ‘ "
: E . | ! i
10000 - JU f) \ | :
0 1 | el b : | o “
0- T 4 T 1 T T L 1 T 1 T T T
333.0 416.2 499 .4 582.6 665.8 749.0 832.2 915.4 998.6 1081.8
Time [ns)
P-buffer 4 N-1 N N+5 N+6 N+7 N+8
C-buffer 1 N-2 N-1 N+4 N+5 N+6 N+7
Fetch IoOjIiojiojiojojiofI0}I0 iIojwoji1sj19ji0f10 1o} 10 10 f1Ix2fi13ji10}10 4114
Decode A ojojojiojofioflo I711011018119]10]I10(110}I11}10 |10 jI12{iL3}101] 10
Execute A ojojiojojiofio ef17j1wojio)mwji9jio|i10f10pi1rjio|fio finzji13jio
333.0 416.2 499.4 832.2 915.4 998.6 1081.8

Time (ns)

30000 A
25000
20000 A

15000 -

Amplitude

10000 1

—— Prefetch Disabled I-Cache Disabled
~—— Prefetch Disabled |-Cache Enabled

P-buffer 4

C-buffer 1

Fetch 1

Decode A

Execute -

MACMHANO
LDR|LDR|LDR}:M ABLE
T

499.0

748.6

831.8

Time (ns)

915.0

1247.8

831.8

111 10

112

Time (ns)

915.0

1164.6

1247.8

28

@

Spatial genericity of obtained results

1 The fault is easy to generate in a large region on the chip

7 == Other
= B Zero -4
o o == Double
) I '}
. | |
ﬁu: M
o
. I e]
o ﬂ l. FLASH
00 4 RANK 1
— .
N-1 N N+1 N+2
Cbutre N-2 N-1 N N+1 -2 FLASH
332.8 374.4 416.0 457.6 499.2 540.8 582.4 624.0 665.6 BANK 2

Injection time (ns)

Clock & Analog
Modules

Glue Logic

Errors
R5-Zero,R2-Zero,R3-Zerd
R5-Zero,R2-Zero,R3-Corr]

Jad

R5-Correct,R2-Correct,R3-Double SRAM
R5-Double,R2-Double,R3}Zero Glue Logic
Other

4 3 2 1

29

	Fault Analysis through Body Bias Injection on the FLASH Memory Accelerator of a Microcontroller
	Background - Hardware security
	Body Bias Injection (BBI)
	The state of the art of Body Bias Injection
	Program Control Flow
	 Program control flow attack
	Target architecture
	Study in 2 Phases
	Sequential Execution
	Sequential Execution
	Sequential Execution
	Sequential Execution
	Single Branch Control Structure
	Single Branch Control Structure
	Single Branch Control Structure
	Single Branch Control Structure
	Single Branch Control Structure
	Single Branch Control Structure
	Single Branch Control Structure
	Single Branch Control Structure
	Fault Model Conclusion
	Fault Model Conclusion
	Conclusion
	Diapositiva numero 24
	Annex
	Diapositiva numero 26
	Diapositiva numero 27
	Diapositiva numero 28
	Spatial genericity of obtained results

