From NOP to ADD and
Beyond

A Novel Fault-Model Comprising Variable-Length Instruction Sets

Marvin Saf3 Thomas Martin Johannes Lehrach Jean-Pierre Seifert
TU-Berlin TU-Berlin TU-Berlin

W¥® Fault Diagnosis and
Tolerance in Cryptography

From NOP to ADD

» Central question of this work:
* “What if, a single bit-flip could re-write your entire program?”

* Implications of injecting faults are well understood for
embedded devices, where we encounter:

« simple architecture
 reduced instruction set characteristics (RISC)

* instructions of clearly-defined lengths

* For all x86-based systems we have:
* highly complex micro-architecture

* complex instruction set Yet, we are considering their fault models
* variable-length instructions to be equal!

W¥® Fault Diagnosis and
Tolerance in Cryptography

Most-Related Work

Trouchkine, Thomas, Guillaume Bouffard, and Jessy Clédiére.
"Fault injection characterization on modern cpus: From the isa to the micro-architecture.”
IFIP International Conference on Information Security Theory and Practice.

Cham: Springer International Publishing, 2019.

* Methodology to map micro-architectural blocks (MABs)
* By this making statements about their behavior under fault:

* Incorrect arithmetic? ALU affected
* |Incorrect memory values? Load/Store unit affected
* |nstruction corrupted? Fetch/Decode unit affected

»Does not consider decoder misalignment

AD ;b 45 ;b
ThG»E B§ F W Fault Diagnosis and
areaew v Tolerance in Cryptography

Most-Related Work

Trouchkine, Thomas, Guillaume Bouffard, and Jessy Clédiére.
"EM fault model characterization on SoCs: from different architectures to the same fault model.”

2021 Workshop on Fault Detection and Tolerance in Cryptography (FDTC).

* Analyzes ARM (BCM2837) and x86 (i3-6000u) instructions to
exhibit same fault models

* single instructions show similar bit flip pattern
* hence, a similar fault model is assumed

»Does not consider decoder misalignment

AD ;b 45 ;b
ThG»E B§ F W Fault Diagnosis and
areaew v Tolerance in Cryptography

Most-Related Work

Alshaer, lhab, et al.
"Variable-length instruction set: Feature or bug?.”
2022 25th Euromicro Conference on Digital System Design (DSD).

* Fault Injection on variable length ISA (ARM with Thumb-II)

* Skip-4B or Skip-4B and repeat previous instruction
* Decoder always stays aligned
* No hidden instructions executed

»Does not consider decoder misalignment

AD ;b 45 ;b
ThG»E B§ F W Fault Diagnosis and
areaew v Tolerance in Cryptography

Variable Length Instruction Sets

ARM (Thumb-Il), Risc-V (RV32-C), ...

* Considered variable-length
ISAs as well

* Commonly switchable
between 32- and 76- bits

»Saving program memory for
embedded devices

X86 (always)

 True variable instruction set

* Common instructions range
from 1 to 15 bytes!

* An x86 program is nothing
more but a continuous
sequence of bytes

* Must be interpreted on the fly!
»0One correct interpretation

GhGE N "F It Di is and
au 1agnosis an
ara e v g

Tolerance in Cryptography

Injecting Faults on ARM32

ARM32 If we assume PC+4 fault model...

4-Byte

0x00 * Any of the instructions could

DAY
* e.g.,the ADD at 0x00
0x08
’ * New program would only

execute SUB, MOV, CMP

0x0C

AD ;G 4 &b
ThG»E B§ ” W Fault Diagnosis and
areaew v Tolerance in Cryptography

How would that look on x86?

In this case, a totally new program would be executed, as
the byte-stream would be re-interpreted from 0x04!

4-Byte alignment displayed for clarity only! sge? OF

Tolerance in Cryptography

Verify misalignment in x86

* How can we test such * x86 ISA defines multiple NOP
hypothesis? encodings, such as:
* Alot of invalid instructions * 1-byte NOP:
* Misalignmentinstable * 0x90
* Hence, hard to observe! * 7-byte NOP:
* 0xOF1F8000000000
* 9-byte NOP:

* We craft a specific payload,
hidden in regular instructions
* Normally dormant
* Activate by injecting faults

* Ox660F1F840000000000

W¥® Fault Diagnosis and
Tolerance in Cryptography

From 7-Byte NOP to 7-Byte ADD

* Note, that for longer NOPs the lower b

« 7-byte NOP: OF 1F 80 00 00 0000

ztes are zZero.

* These are ignored by the decoder

* continues decoding at PC+7
»We can embed another instruction

Normal Alignment
Instruction 1 (Bytes @-6):

[0¢] 1] o0 on] [48] [s2] [@] o

Instruction 2 (Bytes 7-13):

Ll ERE| | EA[=TR

Instruction 3 (Bytes 14-28):

[o¢| 1] (oo oo [48]][] - -

B Inst 1 B Inst 2 B Inst 3

Misaligned (+4 bytes)
Skip bytes @-3:

BF 1F || 88 @@ Skipped bytes
New Instruction A (Bytes 4-10):

New Instruction B (Bytes 11-17):

New Instruction C (Bytes 18-Z23):

B Inst 1 B Inst 2 B Inst 3

4D ;b 4D ;G
L 1 J] [] ' ” Fault Diagnosis and
aa e ¥V ‘:Il. A g

From 7-Byte NOP to 7-Byte ADD

* By this specifically crafted payload, we transform a stream of NOP
iInstructions into a stream of ADD RBX, imm32 instructions:

* RBX is initialized to zero beginning of the program

* imm32is OxOF1F8000

* This is a target crafted to test

our fault-model hypothesis (PoC)

Misaligned (+4 bytes)
Skip bytes @-3:

BF | 1F | 8@ @@ Skipped byte
New Instruction A (Bytes 4-1@)

i

New Instruction B (Bytes 11-17):

New Instruction C (Bytes 18-Z23):

B Inst 1 B Inst 2 B Inst 3

—- -l- -l ' W Fault Diagnosis and
au
araD e ¥ ;2

Tolerance in Cryptography

Device under Test

* We test our fault model hypothesis on
* Latte-Panda Mu (N100)
* Running an UEFI Module

* UART based communication protocol (request / transmit commands and data)
* Grants bare-metal access in absence of operating system

* No DVFS, operating at constant 800 MHz
* |-cache and D-cache deactivated
* Gracemont micro-architecture (Alder Lake)

* Proposed attack also works with DVFS and caches being activated
* However, results due to timing less accurate

' W Fault Diagnosis and

Tolerance in Cryptography

Fault Injection Methodology

1. First, we perform photonic emission microscopy
* by on-off modulation we discover the x86 core positions on the die
» Drastically narrowing down XY search space! (weeks vs. hours)

] - L : W
- Yoo NSl ad oo .-
}3.',‘ - L £ = s 7 .
=4 L oule B Y
e ¥ e s 3
TR el Y -
s [.

2. EMFI performed using NewAE’s ChipShouter [4] in combination
with OpenXYZ [5]
* 150V, 80nS pulse width, 3mm NewAE EMFI coil (empirically most promising)

W¥® Fault Diagnosis and
Tolerance in Cryptography

Do Misalignment fault happen?

* To evaluate our novel fault model, we execute an UEFI routine

which:
1. Generates a trigger
2. Setsregistervalues to clearly defined values
3. Executes 10_000 of our specifically crafted NOPs
4. Transmits processor state and performance counters

* The results show clear evidence of misalignment!

W¥® Fault Diagnosis and
Tolerance in Cryptography

Distribution of Results

Distribution of Fault Injection Outcomes (Intel N100 @ 800MHz)
80% -

73.0%

70% -

60% -

50% -

;6‘
>
(@]
5 40% -
3
jop
(]
i
30% -
20% - . .
) 15.5% Misalignment
Lo 10.4% occurred!
-
0% - 0.93% 0.22%
(I 1 1

Ineffective Exception Crash Success Invalid
Fault Injection Outcome

b 4 ;G
L 1 J] [] ' ” Fault Diagnosis and
aa e ¥V o g

Tolerance in Cryptography

Distribution within the Successes

Distribution Within Successful Fault Injections (0.93% of total)

100%

100% -

S
& 80% -
Q
(]
S
S 64.8%
= 0,
§ 60% - 59.5%
(&)
()
3
n
o
o
v 0,
% 40% - 37.8%
I=
[«F]
b
]
[=18
20% -
10.0%
0% - 1 0) n _I
RBX Modified RAX Modified Math. Verified Bit-flipped Other Registers
(Exact ADD) Immediate
Evidence Type

AD ;b 45 ;b
ThG»E B§ F W Fault Diagnosis and
areaew v Tolerance in Cryptography

And Beyond

* Since acceptance of this work at FTDC we continue working on
this project:
* We created a QEMU-based Fault Injection simulator for x86

* Simulator analyzes any provided x86 binary for misalignment vulnerability
* Currently scanning open-source software
* Discovered severe vulnerabilities

* Preliminary results confirm that out novel misalignment faults
bypass fault-tolerant firmware!

W¥® Fault Diagnosis and
Tolerance in Cryptography

Take-Aways @

* The fault model encountered on x86 is fundamentally different to
those we know!

* Could also explain results obtained in past work

* In this work we turned a stream of NOPs into a stream of ADDs with
one electromagnetic pulse

Every x86 program hides a second program waiting to be revealed!

AD ;G 4 &b
GhGDE § ' W Fault Diagnosis and
areaew v Tolerance in Cryptography

References

* Trouchkine, Thomas, Guillaume Bouffard, and Jessy Clediere.
"Fault injection characterization on modern cpus: From the isa to
the micro-architecture.”

IFIP International Conference on Information Security Theory and
Practice.
Cham: Springer International Publishing, 2019.

* Trouchkine, Thomas, Guillaume Bouffard, and Jessy Clédiere.
"EM fault model characterization on SoCs: from different
architectures to the same fault model.”
2021 Workshop on Fault Detection and Tolerance in Cryptography
(FDTC).

AD ;G 4 &b
GhGDE § ' W Fault Diagnosis and
areaew v Tolerance in Cryptography

References

* Alshaer, Ihab, et al.
"Variable-length instruction set: Feature or bug?.”
2022 25th Euromicro Conference on Digital System Design (DSD).

* https://github.com/newaetech/ChipSHOUTER
* https://github.com/HWS-XMS/OpenXYZ.git

AD ;G 4 &b
GhGDE § ' W Fault Diagnosis and
areaew v Tolerance in Cryptography

	Default Section
	Folie 1: From NOP to ADD and Beyond

	teaser
	Folie 2: From NOP to ADD

	Related work
	Folie 3: Most-Related Work
	Folie 4: Most-Related Work
	Folie 5: Most-Related Work

	Intro
	Folie 6: Variable Length Instruction Sets
	Folie 7: Injecting Faults on ARM32
	Folie 8: How would that look on x86?

	Derivation
	Folie 9: Verify misalignment in x86
	Folie 10: From 7-Byte NOP to 7-Byte ADD
	Folie 11: From 7-Byte NOP to 7-Byte ADD

	Verification
	Folie 12: Device under Test
	Folie 13: Fault Injection Methodology
	Folie 14: Do Misalignment fault happen?
	Folie 15: Distribution of Results
	Folie 16: Distribution within the Successes
	Folie 18: And Beyond

	Takeaways
	Folie 19: Take-Aways
	Folie 20: References
	Folie 21: References

