
From NOP to ADD and
Beyond

A Novel Fault-Model Comprising Variable-Length Instruction Sets

Marvin Saß
TU-Berlin

Thomas Martin Johannes Lehrach
TU-Berlin

Jean-Pierre Seifert
TU-Berlin

From NOP to ADD

• Central question of this work:
• “What if, a single bit-flip could re-write your entire program?”

• Implications of injecting faults are well understood for
embedded devices, where we encounter:
• simple architecture
• reduced instruction set characteristics (RISC)
• instructions of clearly-defined lengths

• For all x86-based systems we have:
• highly complex micro-architecture
• complex instruction set
• variable-length instructions

Yet, we are considering their fault models
to be equal!

Most-Related Work

• Methodology to map micro-architectural blocks (MABs)
• By this making statements about their behavior under fault:

• Incorrect arithmetic? ALU affected
• Incorrect memory values? Load/Store unit affected
• Instruction corrupted? Fetch/Decode unit affected

➢Does not consider decoder misalignment

Trouchkine, Thomas, Guillaume Bouffard, and Jessy Clédière.
"Fault injection characterization on modern cpus: From the isa to the micro-architecture.”
IFIP International Conference on Information Security Theory and Practice.
Cham: Springer International Publishing, 2019.

Most-Related Work

• Analyzes ARM (BCM2837) and x86 (i3-6000u) instructions to
exhibit same fault models
• single instructions show similar bit flip pattern
• hence, a similar fault model is assumed

➢Does not consider decoder misalignment

Trouchkine, Thomas, Guillaume Bouffard, and Jessy Clédière.
"EM fault model characterization on SoCs: from different architectures to the same fault model.”
2021 Workshop on Fault Detection and Tolerance in Cryptography (FDTC).

Most-Related Work

• Fault Injection on variable length ISA (ARM with Thumb-II)
• Skip-4B or Skip-4B and repeat previous instruction
• Decoder always stays aligned
• No hidden instructions executed

➢Does not consider decoder misalignment

Alshaer, Ihab, et al.
"Variable-length instruction set: Feature or bug?.”
2022 25th Euromicro Conference on Digital System Design (DSD).

Variable Length Instruction Sets

ARM (Thumb-II), Risc-V (RV32-C), …
• Considered variable-length

ISAs as well
• Commonly switchable

between 32- and 16- bits
➢Saving program memory for

embedded devices

X86 (always)
• True variable instruction set

• Common instructions range
from 1 to 15 bytes!

• An x86 program is nothing
more but a continuous
sequence of bytes
• Must be interpreted on the fly!

➢One correct interpretation

Injecting Faults on ARM32

ARM32 If we assume PC+4 fault model …

• Any of the instructions could
be skipped
• e.g., the ADD at 0x00

• New program would only
execute SUB, MOV, CMP

ADD

SUB

MOV

CMP

0x00

0x04

0x08

0x0C

4-Byte

How would that look on x86?

x86

ADD SUB

CMP

0x00

0x04

0x08

SUB MOV

If we assume PC+4 fault model …

• Any of the instructions could
be affected
• e.g., the ADD at 0x00

• New program would execute
half a SUB instruction,
followed by MOV and CMP

4-Byte

In this case, a totally new program would be executed, as
the byte-stream would be re-interpreted from 0x04!

4-Byte alignment displayed for clarity only!

Verify misalignment in x86

• How can we test such
hypothesis?
• A lot of invalid instructions
• Misalignment instable
• Hence, hard to observe!

• We craft a specific payload,
hidden in regular instructions
• Normally dormant
• Activate by injecting faults

• x86 ISA defines multiple NOP
encodings, such as:
• 1-byte NOP:

• 0x90

• 7-byte NOP:
• 0x0F1F8000000000

• 9-byte NOP:
• 0x660F1F840000000000

From 7-Byte NOP to 7-Byte ADD

• Note, that for longer NOPs the lower bytes are zero:
• 7-byte NOP: 0F 1F 80 00 00 00 00

• These are ignored by the decoder
• continues decoding at PC+7
➢We can embed another instruction

From 7-Byte NOP to 7-Byte ADD

• By this specifically crafted payload, we transform a stream of NOP
instructions into a stream of ADD RBX, imm32 instructions:
• RBX is initialized to zero beginning of the program
• imm32 is 0x0F1F8000

• This is a target crafted to test
our fault-model hypothesis (PoC)

Device under Test

• We test our fault model hypothesis on
• Latte-Panda Mu (N100)
• Running an UEFI Module

• UART based communication protocol (request / transmit commands and data)
• Grants bare-metal access in absence of operating system

• No DVFS, operating at constant 800 MHz
• I-cache and D-cache deactivated
• Gracemont micro-architecture (Alder Lake)

• Proposed attack also works with DVFS and caches being activated
• However, results due to timing less accurate

Fault Injection Methodology

1. First, we perform photonic emission microscopy
• by on-off modulation we discover the x86 core positions on the die
➢Drastically narrowing down XY search space! (weeks vs. hours)

2. EMFI performed using NewAE’s ChipShouter [4] in combination
with OpenXYZ [5]

• 150V, 80nS pulse width, 3mm NewAE EMFI coil (empirically most promising)

Do Misalignment fault happen?

• To evaluate our novel fault model, we execute an UEFI routine
which:

1. Generates a trigger
2. Sets register values to clearly defined values
3. Executes 10_000 of our specifically crafted NOPs
4. Transmits processor state and performance counters

• The results show clear evidence of misalignment!

Distribution of Results

Misalignment
occurred!

Distribution within the Successes

And Beyond

• Since acceptance of this work at FTDC we continue working on
this project:
• We created a QEMU-based Fault Injection simulator for x86
• Simulator analyzes any provided x86 binary for misalignment vulnerability

• Currently scanning open-source software
• Discovered severe vulnerabilities

• Preliminary results confirm that out novel misalignment faults
bypass fault-tolerant firmware!

Take-Aways

• The fault model encountered on x86 is fundamentally different to
those we know!
• Could also explain results obtained in past work

• In this work we turned a stream of NOPs into a stream of ADDs with
one electromagnetic pulse

Every x86 program hides a second program waiting to be revealed!

References

• Trouchkine, Thomas, Guillaume Bouffard, and Jessy Clédière.
"Fault injection characterization on modern cpus: From the isa to
the micro-architecture.”
IFIP International Conference on Information Security Theory and
Practice.
Cham: Springer International Publishing, 2019.

• Trouchkine, Thomas, Guillaume Bouffard, and Jessy Clédière.
"EM fault model characterization on SoCs: from different
architectures to the same fault model.”
2021 Workshop on Fault Detection and Tolerance in Cryptography
(FDTC).

References

• Alshaer, Ihab, et al.
"Variable-length instruction set: Feature or bug?.”
2022 25th Euromicro Conference on Digital System Design (DSD).

• https://github.com/newaetech/ChipSHOUTER
• https://github.com/HWS-XMS/OpenXYZ.git

	Default Section
	Folie 1: From NOP to ADD and Beyond

	teaser
	Folie 2: From NOP to ADD

	Related work
	Folie 3: Most-Related Work
	Folie 4: Most-Related Work
	Folie 5: Most-Related Work

	Intro
	Folie 6: Variable Length Instruction Sets
	Folie 7: Injecting Faults on ARM32
	Folie 8: How would that look on x86?

	Derivation
	Folie 9: Verify misalignment in x86
	Folie 10: From 7-Byte NOP to 7-Byte ADD
	Folie 11: From 7-Byte NOP to 7-Byte ADD

	Verification
	Folie 12: Device under Test
	Folie 13: Fault Injection Methodology
	Folie 14: Do Misalignment fault happen?
	Folie 15: Distribution of Results
	Folie 16: Distribution within the Successes
	Folie 18: And Beyond

	Takeaways
	Folie 19: Take-Aways
	Folie 20: References
	Folie 21: References

